Abstract:
The present disclosure relates to a blow-molded, rigid collapsible liner that can be suitable particularly for smaller storage and dispensing systems. The rigid collapsible liner may be a stand-alone liner, e.g., used without an outer container, and may be dispensed from a fixed pressure dispensing can. Folds in the rigid collapsible liner may be substantially eliminated, thereby substantially reducing or eliminating the problems associated with pinholes, weld tears, and overflow. The present disclosure also relates to flexible gusseted or non-gusseted liners, which is scalable in size and may be used for storage of up to 200 L or more. The flexible gusseted liner may be foldable, such that the liner can be introduced into a dispensing can. The liner can be made of thicker materials, substantially reducing or eliminating the problems associated pinholes, and may include more robust welds, substantially reducing or eliminating the problems associated weld tears.
Abstract:
A drain connector arranged for mounting to a tank or bag having an interior volume includes a drain flange defining a bore having an inner diameter, and a hollow body having at least an upper portion with a maximum outer diameter that is no greater than the inner diameter of the bore and arranged to convey fluid to the interior volume, with at least one circumferential sealing element between the drain flange and hollow body, with the drain flange including a body extending outside the interior volume and including at least one retaining element arranged to retain the hollow body in a position. A drain flange may include multiple bores for receiving multiple hollow bodies, with each hollow body including at least one circumferential sealing element. One or more drain flanges may be generic for use with hollow bodies of different characteristics to enable fabrication of a processing container or bag by affixing one or more drain flanges, and then selecting among the plurality of different hollow bodies for insertion into the drain flange(s).
Abstract:
A container that provides support structure and environmental control means including, for example, minimal contact with a wafer or reticle contained therein that cooperates with wafer or reticle to provide a diffusion barrier mitigates against particles settling on a face of the wafer or reticle. The container includes a base having a flat, polished surface with protrusions upon which the wafer or reticle rests. The protrusions are of a geometry, such as a sphere, that imparts minimum contact with the wafer or reticle and suspends the wafer or reticle over the base, providing a gap therebetween. The gap isolates the wafer or reticle from the flat, polished surface of the base, but is dimensioned to inhibit migration of particles into the gap, thereby preventing contamination of sensitive surfaces of the wafer or reticle. Diffusion filters provide pressure equalization without filter media. Moveable reticle pins on the top cover provide reticle restraint. Dual containment pod embodiment provides further isolation and protection.
Abstract:
A system for arranging a plurality of conductors includes a guide assembly having a plurality of passage guides. Each of the plurality of passage guides are constructed to guide the passage of a conduit through the guide assembly. The guide assembly is securable to a substrate and constructed to organize individual conduits passing therethrough. The individual conduits communicate any one of a fluid, an electrical power, a hydraulic fluid, or the like through the guide assembly.
Abstract:
A method for confining circuit cards to different locations within a housing is provided. The housing includes a frame having an array of slots, each containing one of the circuit cards. In one embodiment, the receptacle has a cam that is selectively engageable with the frame for clamping the circuit cards within the frame. In another embodiment, a shaft is rotatably attached to the receptacle. The shaft has a head at one end and a nut opposite the head. A resilient element is disposed on the shaft between the head and the nut. The resilient element is axially compressible between the head and nut to bulge generally perpendicularly to the axial direction into engagement with the frame for clamping the circuit cards within the frame.
Abstract:
Embodiments of the present invention provide tools for installing and extracting fuses. In one embodiment, the tool has an elongate handle. A guideway spans the length of the handle, and a pair of jaws, adapted to retain the fuse, protrudes from an end of the handle. A rod is disposed within the guideway and is selectively actuatable within the guideway for releasing the fuse from the jaws.
Abstract:
An apparatus for processing fluid includes a vessel provided with a sidewall including a passage and at least partially defining an interior compartment. A drain tube positioned in the interior compartment may drain fluid through the passage in the sidewall. The drain tube may be angled, and arranged such that the end in the interior compartment may be adapted for movement as the result of manipulation of a structure, such as a coupler, external to the interior compartment. Accordingly, the drain tube may be positioned along the sidewall at a reference point for movement between a first position for draining fluid above the reference point and a second position for draining fluid below the reference point. An indexing feature may also be provided for incrementally adjusting the position of the drain tube, along with an associated tool to facilitate the adjustment. Related methods are also disclosed.
Abstract:
An apparatus for containing objects, such as electronic circuit cards, and a method for making the same, the apparatus having a housing; at least one case disposed within the housing, the case adapted to confine the objects to different locations within the housing and comprising a frame, the region within the frame divided into two regions by a first partition, each of the two regions divided into a plurality of sections by a plurality of second partitions, each of the second partitions thermally coupled to the frame and the first partition, each of the sections divided into a plurality of slots, each slot having an object disposed therein for thermal contact between the first partition, a second partition, and one of a second partition and the frame; and at least one heat sink adapted to absorb heat from the case, the heat sink thermally coupled to the case and the housing.
Abstract:
An electronics enclosure is provided. The enclosure includes a modular card cage adapted to receive one or more electronic circuit cards and a heat sink adapted to protrude through an opening of an enclosure and couple to the modular card cage. The modular card cage and the heat sink provide an isolated heat transfer path for heat, produced by each of the one or more electronic circuit cards, to be removed from the enclosure.
Abstract:
An apparatus for containing objects, such as electronic circuit cards, and a method for making the same, the apparatus having a housing; at least one case disposed within the housing, the case adapted to confine the objects to different locations within the housing and comprising a frame, the region within the frame divided into two regions by a first partition, each of the two regions divided into a plurality of sections by a plurality of second partitions, each of the second partitions thermally coupled to the frame and the first partition, each of the sections divided into a plurality of slots, each slot having an object disposed therein for thermal contact between the first partition, a second partition, and one of a second partition and the frame; and at least one heat sink adapted to absorb heat from the case, the heat sink thermally coupled to the case and the housing.