Abstract:
The present invention relates to a system and process for gasifying feedstock such as carbonaceous materials. The invention includes partial combustion of dry solids and pyrolysis of carbonaceous material slurry in two separate reactor sections and produce mixture products comprising synthesis gas. The invention employs one or more catalytic or sorbent bed for removing tar from the synthesis gas. The inventive system and process allow a gasification to be carried out under higher slurry feeding rate and lower temperature with the provision to manage the tar being produced, therefore to increase the conversion efficiency of the overall gasification.
Abstract:
The invention provides an improved alkylation process and reactor apparatus. The invention utilizes a vessel containing a riser-reactor conduit, an acid settler and an acid cooler. Hydrocarbons are introduced beneath said riser-reactor conduit, mixed with acid catalyst, and passed generally upwards through the riser-reactor conduit to enter the acid settler. Within the acid settler, alkylate is separate from the acid catalyst and is removed from the vessel. Acid catalyst from the acid settler is cooled in the internal acid coolers and returned to the region beneath the riser-reactor conduit.
Abstract:
An improved process and apparatus is disclosed for rejecting nitrogen from a gaseous nitrogen-methane mixture while the nitrogen content of the mixture varies widely. The process, which is especially suited for recovery of nitrogen in an enhanced oil reservoir flooding project which employs nitrogen for flooding the reservoir; utilizes a modified dual distillation column arrangement including a relatively high pressure fractionator which lacks a conventional reboiler and a low pressure fractionator which lacks a conventional overhead condenser for liquid reflux.
Abstract:
The present invention relates to a system and process for gasifying feedstock such as carbonaceous materials. The invention includes partial combustion of dry solids and pyrolysis of carbonaceous material slurry in two separate reactor sections and produce mixture products comprising synthesis gas. The invention employs one or more catalytic or sorbent bed for removing tar from the synthesis gas. The inventive system and process allow a gasification to be carried out under higher slurry feeding rate and lower temperature with the provision to manage the tar being produced, therefore to increase the conversion efficiency of the overall gasification.
Abstract:
The present invention relates to a system and process for gasifying feedstock such as carbonaceous materials. The invention includes partial combustion of dry solids and pyrolysis of carbonaceous material slurry in two separate reactor sections and produce mixture products comprising synthesis gas. The invention employs one or more catalytic or sorbent bed for removing tar from the synthesis gas. The inventive system and process allow a gasification to be carried out under higher slurry feeding rate and lower temperature with the provision to manage the tar being produced, therefore to increase the conversion efficiency of the overall gasification.
Abstract:
A method and apparatus for removing sulfur from a hydrocarbon-containing fluid stream wherein desulfurization is enhanced by improving the contacting of the hydrocarbon-containing fluid stream and sulfur-sorbing solid particulates in a fluidized bed reactor.
Abstract:
A method and apparatus for removing sulfur from a hydrocarbon-containing fluid stream wherein desulfurization is enhanced by improving the contacting of the hydrocarbon-containing fluid stream and sulfur-sorbing solid particulates in a fluidized bed reactor.
Abstract:
Method and apparatus are provided whereby a hydrocarbon gas and liquid mixture is separated into a first fluid and a second fluid. The first fluid is vaporized to form a vapor which is commingled with the second fluid. The commingled fluid is passed through a superheating exchange means wherein the commingled fluid is superheated prior to passing to a flare for combustion.
Abstract:
A method and apparatus for recovering condensable vapor which is expelled from a container during filling by collecting and compressing the vapor after which the compressed vapor is cooled by cooling means. Upon cooling, a portion of the vapor is condensed after which the condensate is separated from the vapor in a separator. The vapor portion is then placed into heat transfer relation with heat exchange means which is operable to further cool and condense the vapor. The heat exchange means uses a portion of the vapor as the coolant after the vapor has been expanded through expansion means to effect cooling of the coolant vapor. The vapor used as the coolant is then conducted to a point of use. The recovered liquefied portion of the vapor can be returned to the container from which the vapor was displaced.
Abstract:
An agglomerate removal device for removing agglomerated particles from a solids-containing stream. The agglomerate removal device can include an agglomerate capture device and an agglomerate withdrawal device. In one embodiment, the agglomerate removal device can be utilized in a process for desulfurizing gasoline or diesel streams in order to remove at least a portion of the agglomerated sorbent particles exiting the fluidized bed regenerator.