摘要:
A wide-array inkjet printhead assembly includes a carrier and a plurality of printhead dies each mounted on the carrier. The carrier includes a substructure and a substrate mounted on the substructure. The substrate includes a plurality of layers and has a plurality of conductive paths extending therethrough. As such, each of the printhead dies are mounted on the substrate and electrically coupled to at least one of the conductive paths of the substrate.
摘要:
An improved ink flow path between an ink reservoir and ink ejection chambers in an inkjet printhead is disclosed along with a preferred printhead architecture. In the preferred embodiment, a barrier layer containing ink channels and firing chambers is located between a rectangular substrate and a nozzle member containing an array of orifices. The substrate contains two spaced apart arrays of ink ejection elements, and each orifice in the nozzle member is associated with a firing chamber and ink ejection element. The ink channels in the barrier layer have ink entrances generally running along two opposite edges of the substrate so that ink flowing around the edges of the substrate gain access to the ink channels and to the firing chambers. High speed printing capability with a firing frequency up to 12 KHz is accomplished by offsetting neighboring ink ejection elements from each other in each primitive grouping in the linear array, combining short shelf length with damped ink inlet channels, and then firing only one ink ejection element at a time in each primitive grouping thereby minimizing undesirable interference such as fluidic crosstalk between closely adjacent ink firing chambers. High resolution printing capability for at least 600 dots-per-inch by the printhead as a whole is accomplished by densely positioning the ink ejection elements in each linear array of ink ejection elements.
摘要:
An ink-cooled thermal ink jet printhead has an efficient heat exchanger located on the back side of the printhead that eliminates the need for heat sinks. All ink flowing to the firing chamber goes through the heat exchanger. The geometry of the heat exchanger is chosen so that almost all the residual heat absorbed by the printhead substrate is transferred to the ink as it flows to the firing chamber. Additionally, the pressure drop of the ink flowing through the heat exchanger is low enough so that it does not significantly reduce the refill rate of the firing chambers. The heat exchanger can have one or more active heat exchanger sides. The heat exchanger has little thermal mass itself and significantly reduces the thermal mass of printhead by eliminating the need for a heat sink. This reduces the warm-up time of the printhead to a fraction of a second.
摘要:
An ink-cooled thermal ink jet printhead has an efficient heat exchanger located on the back side of the printhead that eliminates the need for heat sinks. All ink flowing to the firing chamber goes through the heat exchanger. The geometry of the heat exchanger is chosen so that almost all the residual heat absorbed by the printhead substrate is transferred to the ink as it flows to the firing chamber. Additionally, the pressure drop of the ink flowing through the heat exchanger is low enough so that it does not significantly reduce the refill rate of the firing chambers. The heat exchanger can have one or more active heat exchanger sides. The heat exchanger has little thermal mass itself and significantly reduces the thermal mass of printhead by eliminating the need for a heat sink. This reduces the warm-up time of the printhead to a fraction of a second.