Abstract:
Disclosed is an inkjet print cartridge having an ink reservoir; a substrate having a plurality of individual ink firing chambers with an ink firing element in each chamber along a top surface of the substrate and having a first outer edge along a periphery of substrate; the first outer edge being in close proximity to the ink firing chambers. The ink firing chambers are arranged in a first chamber array and a second chamber array and with the firing chambers spaced so as to provide 600 dots per inch printing. An ink channel connects the reservoir with the ink firing chambers, the channel including a primary channel connected at a first end with the reservoir and at a second end to a secondary channel; the primary channel allowing ink to flow from the ink reservoir, around the first outer edge of the substrate to the secondary channel along the top surface of the substrate so as to be proximate to the ink firing chambers. A separate inlet passage for each firing chamber connecting the secondary channel with the firing chamber for allowing high frequency refill of the firing chamber. A group of the firing chambers in adjacent relationship forming a primitive in which only one firing chamber in the primitive is activated at a time. First circuit member on the substrate connects to the firing elements and a second circuit member on the cartridge connects to the first circuit member, for transmitting firing signals to the ink firing elements at a frequency greater than 9 kHz.
Abstract:
An orificeless thin film printhead for an ink jet pen which comprises a substrate having a plurality of vortex activators thereon, and ink dispensing means located adjacent to the substrate for providing a thin layer of ink of a controlled thickness over the surfaces of the vortex activators. A protective cover is disposed on the surface of the substrate and has one or more slots or other openings therein operative to expose the vortex activators during ink jet printhead operation. When each vortex activator is energized, the energy transferred from the surface of the activator into the liquid film creates a microjet and a shear force therein, followed by the formation of a vortex ring in the ink film. The vortex ring is in turn self-propelled at a relatively low velocity through the ink film to the free liquid surface thereby, producing stress at this surface to allow the high velocity ink at the core of the vortex ring to be efficiently transferred to an adjacent print medium with a high degree of directionality, thereby enhancing resolution and print quality on the printed media. In accordance with the present invention, vortex activators include, but without limitation, heater resistors, piston drivers, and piezoelectric cavities.
Abstract:
The drying time for aqueous asphalt emulsions used in the roofing and other waterproofing industries is shortened by separately applying an emulsion breaking agent to the substrate to be waterproofed, to the aqueous asphalt emulsion after it is applied, or both.
Abstract:
An electron lens is used for focusing electrons from a cathode to an anode. The lens includes a first conductive layer with a first opening at a first distance from the cathode. The first conductive layer is held at a first voltage. The lens also includes a second conductive layer with a second opening at a second distance from the first conductive layer and a third distance from the anode. The second conductive layer is held at a second voltage substantially equal to the voltage of the anode. The first and second openings are chosen based on the first voltage, the second voltage, the first distance, the second distance and the third distance. The opening focuses the electrons emitted from the cathode onto the anode to a spot size preferably less than 40 nanometers. The force created between the cathode and anode is minimized by the structure of the lens.
Abstract:
An improved ink flow path between an ink reservoir and ink ejection chambers in an inkjet printhead is disclosed along with a preferred printhead architecture. In the preferred embodiment, a barrier layer containing ink channels and firing chambers is located between a rectangular substrate and a nozzle member containing an array of orifices. The substrate contains two spaced apart arrays of ink ejection elements, and each orifice in the nozzle member is associated with a firing chamber and ink ejection element. The ink channels in the barrier layer have ink entrances generally running along two opposite edges of the substrate so that ink flowing around the edges of the substrate gain access to the ink channels and to the firing chambers. High speed printing capability with a firing frequency up to 12 KHz is accomplished by offsetting neighboring ink ejection elements from each other in each primitive grouping in the linear array, combining short shelf length with damped ink inlet channels, and then firing only one ink ejection element at a time in each primitive grouping thereby minimizing undesirable interference such as fluidic crosstalk between closely adjacent ink firing chambers. High resolution printing capability for at least 600 dots-per-inch by the printhead as a whole is accomplished by densely positioning the ink ejection elements in each linear array of ink ejection elements.
Abstract:
Disclosed is an inkjet print cartridge having an ink reservoir; a substrate having a plurality of individual ink firing chambers with an ink firing element in each chamber along a top surface of the substrate and having a first outer edge along a periphery of substrate; the first outer edge being in close proximity to the ink firing chambers. The ink firing chambers are arranged in a first chamber array and a second chamber array and with the firing chambers spaced so as to provide 600 dots per inch printing. An ink channel connects the reservoir with the ink firing chambers, the channel including a primary channel connected at a first end with the reservoir and at a second end to a secondary channel; the primary channel allowing ink to flow from the ink reservoir, around the first outer edge of the substrate to the secondary channel along the top surface of the substrate so as to be proximate to the ink firing chambers. A separate inlet passage for each firing chamber connecting the secondary channel with the firing chamber for allowing high frequency refill of the firing chamber. A group of the firing chambers in adjacent relationship forming a primitive in which only one firing chamber in the primitive is activated at a time. A first circuit on the substrate connects to the firing elements and a second circuit on the cartridge connects to the first circuit for transmitting firing signals to the ink firing elements at a frequency greater than 9 kHz. When operating the print cartridge, the substrate is able to dissipate more heat, since the ink flowing across the back of the substrate and around the edges of the substrate acts to draw heat away from the back of the substrate.
Abstract:
The drying time for aqueous asphalt emulsions used in the roofing and other waterproofing industries is shortened by separately applying an emulsion breaking agent to the substrate to be waterproofed, to the aqueous asphalt emulsion after it is applied, or both.
Abstract:
An electronic device of the invention includes a tip emitter formed in a well that is defined in a substrate. An extractor disposed about the well extracts emissions from the tip emitter. A wide lens focuses the emissions through its opening. The opening is sufficiently large and spaced far enough away to encompass the majority of a divergence angle of the emissions. The emissions are focused into a spot.
Abstract:
An inkjet ink for printing onto a print medium is provided. The inkjet ink evidences minimal tail breakup and improved drop trajectory, thereby evidencing improved print quality. The minimal tail breakup and improved drop trajectory are achieved by adding at least one surface active additive to the ink to provide the ink with a surface tension of at least 35 dyne/cm and a contact angle (with an orifice plate comprising KAPTON, an aromatic polyimide) of about 35 to 65 degrees.
Abstract:
The drying time for aqueous asphalt emulsions used in the roofing and other waterproofing industries is shortened by separately applying an emulsion breaking agent to the substrate to be waterproofed, to the aqueous asphalt emulsion after it is applied, or both.