Abstract:
A composite orifice plate for a printer such as a thermal inkjet printer includes a first layer of non-wettable material and a second layer of wettable material joined to the first layer. In the orifice plate, at least one orifice is formed to extend through the first layer and at least one opening is formed to extend through the second layer, the orifice and opening are in fluid communication and aligned in an axial direction with an ink outlet located on a surface of the first layer facing away from the second layer and an ink inlet located on a surface of the second layer facing away from the first layer.
Abstract:
Disclosed is an inkjet print cartridge including an ink reservoir; a substrate having a plurality of individual ink firing chambers with an ink firing element in each chamber along a top surface of said substrate and having a first outer edge along a periphery of substrate; the first outer edge being in close proximity to the ink firing chambers. The ink firing chambers are arranged in a first chamber array and a second chamber array and with the firing chambers spaced so as to provide 600 dots per inch printing. An ink channel connects the reservoir with the ink firing chambers, the channel including a primary channel connected at a first end with the reservoir and at a second end to a secondary channel; the primary channel allowing ink to flow from the ink reservoir, around the first outer edge of the substrate to the secondary channel along the top surface of the substrate so as to be proximate to the ink firing chambers. A separate inlet passage defined by a barrier layer for each firing chamber connecting the secondary channel with the firing chamber for allowing high frequency refill of the firing chamber. The separate inlet passage for each firing chamber having peninsulas and pinch points formed in the barrier layer to prevent cross-talk and overshoot during high frequency operation. A group of the firing chambers in adjacent relationship forming a primitive in which only one firing chamber in said primitive is activated at a time. A first circuit on said substrate connect to the firing elements and a second circuit on the cartridge connect to the first circuit, for transmitting firing signals to the ink firing elements at a frequency greater than 9 kHz. The preferred configuration of the nozzle member, ink channels, and vaporization chambers allows a printing resolution of 600 dpi and a firing rate of greater than 9 kHz.
Abstract:
An ink fill slot can be precisely manufactured in a substrate utilizing photolithographic techniques with chemical etching, plasma etching, or a combination thereof. These methods may be used in conjunction with laser ablation, mechanical abrasion, or electromechanical machining to remove additional substrate material in desired areas. The ink fill slots are appropriately configured to provide the requisite volume of ink at increasingly higher frequency of operation of the printhead by means of an extended portion that results in a reduced shelf length and thus reduced fluid impedance imparted to the ink. The extended portion is precisely etched to controllably align it with other elements of the printhead.
Abstract:
A single mask is used to form a tapered nozzle in a polymer nozzle member using laser ablation. In one embodiment of the mask, clear portions of the mask, corresponding to the nozzle pattern to be formed, each incorporate a variable-density dot pattern, where the opaque dots act to partially shield the underlying polymer nozzle member from the laser energy. This partial shielding of the nozzle member under the dot pattern results in the nozzle member being ablated to less of a depth than where there is no shielding. By selecting the proper density of opaque dots around the peripheral portions of the mask openings, the central portion of each nozzle formed in the polymer nozzle member will be completely ablated through, and the peripheral portions of the nozzle will be only partially ablated through. By increasing the density of dots toward the periphery of each mask opening, the resulting nozzle may be formed to have any tapered shape. Other mask patterns are also described.
Abstract:
A flexible circuit such as a membrane probe (10) is made by forming a trench (50, 60) in the upper surface (39) of a polyimide substrate (38) with a trench base (52, 62) spaced below the upper surface. The trench has an end wall (54, 64) ramped at an obtuse angle to the substrate upper surface and the trench base. A conductive layer deposited on the upper surface is patterned to form a line trace (44, 46) extending continuously over the substrate upper surface, down the ramped end wall and along the trench base, to contact a ground plane or form a distributed capacitance. An excimer laser is used, at a wavelength of 308 nm., an energy density less than 0.54 J./cm.sup.2 (preferably 0.18 to 0.35 J./cm.sup.2), and a pulse frequency of about 100 Hz., to ablate successive incremental thicknesses (80) of polyimide from the substrate in sweeps of depthwise decreasing length.
Abstract translation:通过在聚酰亚胺基板(38)的上表面(39)中形成沟槽(50,60),通过在上表面间隔开的沟槽基座(52,62)形成诸如膜探针(10)的柔性电路 。 所述沟槽具有以与所述衬底上表面和所述沟槽基底钝角倾斜的端壁(54,64)。 沉积在上表面上的导电层被图案化以形成在衬底上表面上连续延伸的线迹线(44,46),沿斜坡端壁和沿着沟槽基底延伸,以接触接地平面或形成分布电容。 使用准分子激光器,波长为308nm,能量密度小于0.54J / cm 2(优选为0.18至0.35J / cm 2),脉冲频率为约100Hz,以消除连续增量厚度 (80)的聚酰亚胺从扫描深度方向减小的长度。
Abstract:
An analyte stage for use in a spectroscopy system includes a tunable resonant cavity that is capable of resonating electromagnetic radiation having wavelengths less than about 10,000 nanometers, a substrate at least partially disposed within the cavity, and a Raman signal-enhancing structure at least partially disposed within the tunable resonant cavity. A spectroscopy system includes such an analyte stage, a radiation source, and a radiation detector. Methods for performing Raman spectroscopy include using such analyte stages and systems to tune a resonant cavity to resonate Raman scattered radiation that is scattered by an analyte.
Abstract:
A printhead for an inkjet printer employs an ink fill slot having an extended portion disposed as a depression on the primary surface of the printhead substrate. The barrier layer of the printhead forms the walls of the ink ejection chambers, the walls of and constrictions in the ink fill channels, and the contoured barrier lobes between the ink fill channels. The extended portion of the ink fill slot follows the contour of the barrier lobes such that the length of the substrate shelf between the ink fill channel constriction and the extended portion of the ink fill slot is equalized between ink ejection chambers.
Abstract:
Disclosed is an inkjet print cartridge having an ink reservoir; a substrate having a plurality of individual ink firing chambers with an ink firing element in each chamber along a top surface of the substrate and having a first outer edge along a periphery of substrate; the first outer edge being in close proximity to the ink firing chambers. The ink firing chambers are arranged in a first chamber array and a second chamber array and with the firing chambers spaced so as to provide 600 dots per inch printing. An ink channel connects the reservoir with the ink firing chambers, the channel including a primary channel connected at a first end with the reservoir and at a second end to a secondary channel; the primary channel allowing ink to flow from the ink reservoir, around the first outer edge of the substrate to the secondary channel along the top surface of the substrate so as to be proximate to the ink firing chambers. A separate inlet passage for each firing chamber connecting the secondary channel with the firing chamber for allowing high frequency refill of the firing chamber. A group of the firing chambers in adjacent relationship forming a primitive in which only one firing chamber in the primitive is activated at a time. First circuit member on the substrate connects to the firing elements and a second circuit member on the cartridge connects to the first circuit member, for transmitting firing signals to the ink firing elements at a frequency greater than 9 kHz.
Abstract:
An ink fill slot can be precisely manufactured in a substrate utilizing photolithographic techniques with chemical etching, plasma etching, or a combination thereof. These methods may be used in conjunction with laser ablation, mechanical abrasion, or electromechanical machining to remove additional substrate material in desired areas. The ink fill slots are appropriately configured to provide the requisite volume of ink at increasingly higher frequency of operation of the printhead by means of an extended portion that results in a reduced shelf length and thus reduced fluid impedance imparted to the ink. The extended portion is precisely etched to controllably align it with other elements of the printhead.
Abstract:
An improved ink flow path between an ink reservoir and ink ejection chambers in an inkjet printhead is disclosed along with a preferred printhead architecture. In the preferred embodiment, a barrier layer containing ink channels and firing chambers is located between a rectangular substrate and a nozzle member containing an array of orifices. The substrate contains two spaced apart arrays of ink ejection elements, and each orifice in the nozzle member is associated with a firing chamber and ink ejection element. The ink channels in the barrier layer have ink entrances generally running along two opposite edges of the substrate so that ink flowing around the edges of the substrate gain access to the ink channels and to the firing chambers. High speed printing capability with a firing frequency up to 12 KHz is accomplished by offsetting neighboring ink ejection elements from each other in each primitive grouping in the linear array, combining short shelf length with damped ink inlet channels, and then firing only one ink ejection element at a time in each primitive grouping thereby minimizing undesirable interference such as fluidic crosstalk between closely adjacent ink firing chambers. High resolution printing capability for at least 600 dots-per-inch by the printhead as a whole is accomplished by densely positioning the ink ejection elements in each linear array of ink ejection elements.