Abstract:
A computer system includes one or more network interfaces configured to, for each of a plurality of benefactors, send to an electronic device of the benefactor information specifying an item desired by a beneficiary, wherein the item is offered for sale by a merchant at a price. The interfaces are also configured to, for each of the plurality of benefactors, receive from the benefactor electronic device information specifying a portion of the item price the benefactor agrees to pay. The computer system also includes a central processing unit (CPU) configured to determine that a sum of the portions of the item price the plurality of benefactors agreed to pay has reached the item price and in response pay the merchant for the item.
Abstract:
Microencapsulated delivery vehicles comprising an active agent are disclosed. In one embodiment, the microencapsulated delivery vehicles are heat delivery vehicles capable of generating heat upon activation. The microencapsulated heat delivery vehicles may be introduced into wet wipes such that, upon activation, the wet wipe solution is warmed resulting in a warm sensation on a user's skin. Any number of other active ingredients, such as cooling agents and biocides, can also be incorporated into a microencapsulated delivery vehicle.
Abstract:
Microencapsulated delivery vehicles comprising an active agent are disclosed. In one embodiment, the microencapsulated delivery vehicles are heat delivery vehicles capable of generating heat upon activation. The microencapsulated heat delivery vehicles may be introduced into wet wipes such that, upon activation, the wet wipe solution is warmed resulting in a warm sensation on a user's skin. Any number of other active ingredients, such as cooling agents and biocides, can also be incorporated into a microencapsulated delivery vehicle.
Abstract:
Microencapsulated delivery vehicles comprising an active agent are disclosed. In one embodiment, the microencapsulated delivery vehicles are heat delivery vehicles capable of generating heat upon activation. The microencapsulated heat delivery vehicles may be introduced into wet wipes such that, upon activation, the wet wipe solution is warmed resulting in a warm sensation on a user's skin. Any number of other active ingredients, such as cooling agents and biocides, can also be incorporated into a microencapsulated delivery vehicle.
Abstract:
Microencapsulated delivery vehicles comprising an active agent are disclosed. In one embodiment, the microencapsulated delivery vehicles are heat delivery vehicles capable of generating heat upon activation. The microencapsulated heat delivery vehicles may be introduced into wet wipes such that, upon activation, the wet wipe solution is warmed resulting in a warm sensation on a user's skin. Any number of other active ingredients, such as cooling agents and biocides, can also be incorporated into a microencapsulated delivery vehicle.
Abstract:
An in-line formed web or other material (such as foams) having major surfaces in the X-Y plane and a depth in the Z direction is suitable for use as an integral fluid distribution and fluid retention material in a disposable absorbent article. The web or material contains multiple zones of material which may have both thermoplastic fibers/materials and absorbent material components. The multiple zones can have different compositions of thermoplastic fibers/materials and absorbent material as applied in-line by various arrangements of thermoplastic melt dies and absorbent fiber/material dispensers. By arranging at least two of the multiple zones in an opposing relation overlaid in the Z-axis direction of the web/material, a gradient can be formed in the Z-direction of the web/material. In the case of airforming, by coordinating the timing and deposition of the material onto a forming wire, at least one of the multiple zones is arranged to have intermittent material deposition in at least one of a machine direction or a cross direction of the web. Thus the in-line formed integrated web has a Z-direction gradient of air laid material zones and zones of different materials intermittently placed in one of the machine direction or the cross direction and may be customized according to the specific need for a single overall structure having fluid intake, distribution and retention properties in an absorbent article.
Abstract:
Microencapsulated delivery vehicles comprising an active agent are disclosed. In one embodiment, the microencapsulated delivery vehicles are heat delivery vehicles capable of generating heat upon activation. The microencapsulated heat delivery vehicles may be introduced into wet wipes such that, upon activation, the wet wipe solution is warmed resulting in a warm sensation on a user's skin. Any number of other active ingredients, such as cooling agents and biocides, can also be incorporated into a microencapsulated delivery vehicle.
Abstract:
A multi-component feed system to feed two fluid materials from a feed tank to a spraygun is described. The combined pressure feed tank comprises a pressure feed tank with a lid. Inside the tank is a removable support structure having a cone-shaped member with a central chamber supporting a second container closed by a lid. A splash-proof membrane extends between the inner wall of container and the outer wall of container to protect a second fluid component, e.g. a catalyst from entering the lower chamber of tank. Air is fed to containers and via a regulator, a regulator pipe and through an aperture in the lid. Pressure air feeds the fluid components via tubes to a spray gun, where the components combine to be sprayed.
Abstract:
Microencapsulated delivery vehicles comprising an active agent are disclosed. In one embodiment, the microencapsulated delivery vehicles are heat delivery vehicles capable of generating heat upon activation. The microencapsulated heat delivery vehicles may be introduced into wet wipes such that, upon activation, the wet wipe solution is warmed resulting in a warm sensation on a user's skin. Any number of other active ingredients, such as cooling agents and biocides, can also be incorporated into a microencapsulated delivery vehicle.