摘要:
An injectable wireless perfusion sensor provides data to an external device regarding the perfusion of the targeted tissue. The sensor permits a caregiver to monitor cardiovascular performance in specific areas such as the extremities. The sensor will identify whether vascular constriction or obstruction is present and to what extent. Further, once such a condition is treated, the sensor will monitor the effectiveness of that treatment.
摘要:
Triggers and noise should be available as information in recorded electrograms in memories of implantable medical devices. Particularly where the recording of electrogram data is done in the far field, there will be considerable noise and the interpretation of ECG's reproduced from such recorded data will benefit from the storing of information regarding contemporaneous noise. By storing contemporaneous trigger data and noise data directly in the ECG data, recordings of the ECG data become more useful for physician use when played back through an external display system with minimal loss of ECG data, since out of range values are employed for the noise and trigger information and this non-ECG data is limited in size to no longer than individual point values of the ECG signal.
摘要:
A method for determining a radial profile of sonic shear velocity of formations surrounding a fluid-containing borehole, including: suspending a logging device in the borehole; transmitting sonic energy from the logging device to establish flexural waves in the formation; receiving sonic energy from the flexural waves and producing, from the received sonic energy, measurement signals at a number of frequencies; determining, at each frequency, the flexural wave velocity in the formation; deriving sonic compressional and shear velocities of the substantially undisturbed formation; deriving sonic compressional velocity of the borehole fluid; and determining the radial profile of sonic shear velocity from the derived compressional and shear velocities of the substantially undisturbed formation, the derived compressional velocity of the borehole fluid, and the flexural wave velocities.
摘要:
A system for recording trigger events and noise in conjunction with the recording of physiological signals is provided for use in an implantable medical device. In one embodiment, recorded trigger and noise data is provided for display to a physician along with reconstructed ECG data to facilitate interpretation of the ECG signal. In one embodiment, digitized ECG samples that are outside of a predetermined range are discarded during the sampling process so that one or more ranges of encoded values are available for use in encoding noise and trigger information. This non-physiologic data may be limited in size to individual point values of the ECG signal.
摘要:
A system and method of positioning an implantable medical device lead within a patient that includes introducing a distal tip of a first elongated member along a first location within the patient through a first introducing path, and introducing a distal tip of a second elongated member within the first location through a second introducing path. The distal tip of the first elongated member is engaged with the distal tip of the second elongated member at the first location, and, upon engagement, the distal tip of the first elongated member is advanced to a second location via the second elongated member as the second elongation member is advanced to the second location.
摘要:
An implantable medical device which preferably has a segmented looping memory for storing triggered physiologic events also has autotriggers to record the ECGs and any other relevant physiologic signals occurring during triggering events. The problem is that in the far field R-wave sensing is difficult because of noise. Denial and extensible accommodation periods are introduced into the R-wave sensing registration for triggering data storage. If the event is sensed during an accommodation period the sense will not add an R-wave sense to the trigger's count of R-waves. It may cause resetting of the trigger count in some circumstnaces. Typical triggering events may include arrhythmia's and syncopal events. Preferably the device can function without a microprocessor. An outside device or other patient activated manual trigger may be included. Auto triggers and manually set triggers may be of different sizes. Electrode spacing can be critical. Additional sensors may be provided to the device. Preferred communications with the device is through telemetry such as is used for pacemakers and other implanted devices.
摘要:
The present invention uses a R-wave sensing algorithm that uniquely combines an automatic threshold adjustment method with a new noise rejection technique. This algorithm has significant advantages in avoiding the sensing of T-waves, P-waves, and noise/artifacts. Detecting the presence of noise bursts uses features that determine if an R-R interval adjacent to or within the noise signal is valid. Circuitry that discriminates noise signals from R-waves can use any one of several features including, but not limited to, the following: detection events occurring so close together that they are outside normal physiologic heart rates; frequency content that is wider than that of QRS complexes; amplitudes that are different than the adjacent or encompassing R-waves; and amplitudes that display greater than normal variability. The present invention employs multiple discrete thresholds optionally with different decay constants, alone or in combination with one or more substantially constant magnitude sensing threshold.
摘要:
A system and method for determining the optimal positioning of an implantable system for sensing physiologic signals within a body. According to a one embodiment of the system, electrodes are positioned on an external surface of a body, and an ECG monitoring device is used to measure cardiac signals between various pairs of the electrodes. One or more of the electrodes may be re-positioned until an electrode pair position and orientation is located that provides a maximum signal reading. This position and orientation may then be used as the position and orientation in which to implant a corresponding device.