Abstract:
An apparatus (20) for recording a color image, comprises an image sensor (22) having a plurality of pixels (24) formed in a monolithic substrate. Each of the plurality of pixels (24) includes three floating gate semiconductor devices (80, 82, 84). A color tunable filter (30) is positioned between a photosensitive semiconductor device (86) and an electromagnetic radiation source. A FET transistor (130) has a drain (134) connected to the cathode (120) of the photodiode (86), and a source (136) connected to the anode (118) of the photodiode (86) and to control gates (94, 104, 114) of each of the three floating gate semiconductor devices (80, 82, 84). The color tunable filter (30) allows all desired combinations of colors to pass while each of the three floating gate semiconductor devices (80, 82, 84) are respectively selected to store the color image.
Abstract:
Identifying an operation mode of a communication device in which the communication device is to comply with an interference requirement. In response to identifying the operation mode of the communication device in which the communication device is to comply with the interference requirement, reducing noise generated by the communication device by selectively increasing a root mean square (RMS) value of a time-varying current generated by a power source of the communication device.
Abstract:
Disclosed are methods and devices for the irises of cameras. A non-mechanical or electro-optical camera iris includes a controlled material that is configured to change from substantially transparent to substantially opaque by changing the state of the controlled material to effectively adjust the size of the central window of the iris. Accordingly, the described electro-optical iris would add little or no additional bulk to a small mobile communication device camera. The controlled material can be electrically controlled or thermally controlled. The controlled material can be a set of separately controllable areas substantially surrounding the central window. The set can have an ordering from outer to inner so that outer separately controllable areas in the set substantially surround inner separately controllable areas in the set. Accordingly, by changing the opacity of the outer area from transparent to opaque, the size of the central window of the adjustable aperture is reduced.
Abstract:
A satellite communication system (SCS)(100) and method (300) are provided that provide a geographically co-located user assignment system. For unit-to-unit communication, each group of subscriber units is instructed to operate in a half-duplex unit to unit mode. The geographically co-located user assignment system comprises an assignment unit (201), a storage unit (203), and an instruction unit (205) such that a first subscriber unit (204) initiates unit to unit communication with at least a second subscriber unit (206, . . . ) in the first subscriber unit's user group utilizing a multiple access channel assigned to that group by transmitting on an assigned satellite downlink frequency of the multiple-access channel on a push-to-talk basis.
Abstract:
A flexibly adjustable mounting clip assembly and method for providing the assembly for a pager includes a swivel assembly (104) for raising and rotating the mounting clip (102) approximately 180.degree. to provide a reversibly positioned clip. The clip allows for positioning in an introverted position, i.e., facing the bent section toward the pager and for positioning in an extroverted position, i.e., facing away from the pager. In addition, a transparent portion may be positioned below the clip assembly for allowing observation of the information display of the pager.
Abstract:
A method and system for automatically focusing an image received by an image capturing unit (100) relative to a target is disclosed. The target is present in a sequence of one or more scanned frames. The method includes dividing (302) each frame from the sequence of one or more scanned frames in a plurality of sections. The method further includes iteratively determining (304) a relative focus of the target within each section of the plurality of sections. The method further includes adjustment (306) of a position of at least a first light path adjustment element in response to the determined relative focus.
Abstract:
A testing apparatus (100) for an image capture device (401) includes a liquid crystal device (101). The liquid crystal device (101) includes an array of pixels (102), which may actively or passively be changed from a transparent state to an opaque or semi-opaque state. The array of pixels are capable of segmentation into a plurality of predefined regions (107), which may be columns (108) or rows (208). A liquid crystal device driver (105) is configured to actuate the predefined regions (107), individually and sequentially, in a sweep pattern across the liquid crystal device. The testing apparatus (100) may be used to measure a variety of parameters associated with image capture devices, including exposure duration, continuous shutter frequency, and flash-shutter lag. The testing apparatus (100) is capable of operation in a variety of ambient lighting conditions.
Abstract:
A testing apparatus (100) for an image capture device (401) includes a liquid crystal device (101). The liquid crystal device (101) includes an array of pixels (102), which may actively or passively be changed from a transparent state to an opaque or semi-opaque state. The array of pixels are capable of segmentation into a plurality of predefined regions (107), which may be columns (108) or rows (208). A liquid crystal device driver (105) is configured to actuate the predefined regions (107), individually and sequentially, in a sweep pattern across the liquid crystal device. The testing apparatus (100) may be used to measure a variety of parameters associated with image capture devices, including exposure duration, continuous shutter frequency, and flash-shutter lag. The testing apparatus (100) is capable of operation in a variety of ambient lighting conditions.
Abstract:
Identifying an operation mode of a communication device in which the communication device is to comply with an interference requirement. In response to identifying the operation mode of the communication device in which the communication device is to comply with the interference requirement, reducing noise generated by the communication device by selectively increasing a root mean square (RMS) value of a time-varying current generated by a power source of the communication device.
Abstract:
A radiotelephone (100) includes a main battery (101) and is operable on a first communication system. A supplemental module (102) may be attached to the radiotelephone. The supplemental module may include a second RF communication circuit for communicating with a second communication system. This allows the user to configure the radiotelephone for communication with currently available systems. The supplemental module may further include an auxiliary battery for providing extended battery operation. The radiotelephone includes a discharging and charging circuit (310) to control the discharge and charge of the auxiliary and main batteries in a way that allows uninterrupted, continuous operation of the radiotelephone.