Abstract:
A method for manufacturing and preparing for assembly a stator core of a generator, the stator core having a central cylindrical bore along a longitudinal axis of the stator core, the method including in a first step, mounting a first press plate onto a tooling device and concomitantly and/or subsequently positioning at least one key bar to be manufactured in an axial direction with respect to the longitudinal axis in a spaced manner along a peripheral circumference of the first press plate. The method includes in a second step, stacking a plurality of generator laminations onto the first press plate and mechanically coupling the plurality of generator laminations with the at least one key bar and, in a third step, mounting a second press plate onto the plurality of generator laminations, fixing the second press plate to at least one of the at least one key bar and at least one axial fixing device and concomitantly and/or subsequently exerting axial stress on the first and the second press plates.
Abstract:
A protective wall system enclosing a danger zone around an alternator includes a front wall disposed at a front end of the wall system; a back wall disposed at a back end of the wall system; and a first side wall and a second side wall connecting the front wall and the back wall, wherein the front and the back wall extend parallel to a longitudinal axis of the alternator, and wherein the front wall, the back wall and the first and second side walls are gas-tight. The wall system further includes a gas-tight bottom; a first casing enclosing a rotor and a stator of the alternator, wherein a service area surrounds the first casing; and at least one air guiding device configured to guide at least one of gas and heat from a bottom part of the alternator to an upper part of the alternator.
Abstract:
A hydrogen cooled generator assembly includes a hydrogen cooled generator and a fundament, wherein the generator is mounted on the fundament, and wherein the fundament includes at least one cavity underneath the generator. The at least one cavity includes at least one terminal box disposed adjacent to the generator and extending downward from the generator for collection of a plurality of electrical links from the generator; at least one collection box disposed beneath the at least one terminal box having a top wall and a first and a second side wall and configured to guide the plurality of electrical links from the at least one terminal box in a further downward direction; a lateral space; and a seal plate covering the lateral space at an upper end of the lateral space.
Abstract:
A method for manufacturing and preparing for assembly a stator core of a generator, the stator core having a central cylindrical bore along a longitudinal axis of the stator core, the method including in a first step, mounting a first press plate onto a tooling device and concomitantly and/or subsequently positioning at least one key bar to be manufactured in an axial direction with respect to the longitudinal axis in a spaced manner along a peripheral circumference of the first press plate. The method includes in a second step, stacking a plurality of generator laminations onto the first press plate and mechanically coupling the plurality of generator laminations with the at least one key bar and, in a third step, mounting a second press plate onto the plurality of generator laminations, fixing the second press plate to at least one of the at least one key bar and at least one axial fixing device and concomitantly and/or subsequently exerting axial stress on the first and the second press plates.
Abstract:
A protective wall system enclosing a danger zone around an alternator includes a front wall disposed at a front end of the wall system; a back wall disposed at a back end of the wall system; and a first side wall and a second side wall connecting the front wall and the back wall, wherein the front and the back wall extend parallel to a longitudinal axis of the alternator, and wherein the front wall, the back wall and the first and second side walls are gas-tight. The wall system further includes a gas-tight bottom; a first casing enclosing a rotor and a stator of the alternator, wherein a service area surrounds the first casing; and at least one air guiding device configured to guide at least one of gas and heat from a bottom part of the alternator to an upper part of the alternator.
Abstract:
A turbogenerator (20) comprises a rotor (13) and a stator (14), which stator (14) has a polyphase winding, the terminals of which are arranged as generator terminals (U1, . . . ,W2) in a terminal arrangement (25) at the turbogenerator (20) to be connected to a neutral point (26) and to bus bar connections (S1, . . . ,S3). The terminal arrangement (25) is configured such that the phase sequence can be changed in a simple way by changing the connecting scheme at the terminal arrangement (25).
Abstract:
An insulating cover or a bar-to-bar connection of a stator winding of an electric machine has only one opening and is made from a flexible insulating material embedding the bar-to-bar connection entirely in a tight fit. Methods for producing and applying such an insulating cover are also provided.
Abstract:
A hydrogen cooled generator assembly includes a hydrogen cooled generator and a fundament, wherein the generator is mounted on the fundament, and wherein the fundament includes at least one cavity underneath the generator. The at least one cavity includes at least one terminal box disposed adjacent to the generator and extending downward from the generator for collection of a plurality of electrical links from the generator; at least one collection box disposed beneath the at least one terminal box having a top wall and a first and a second side wall and configured to guide the plurality of electrical links from the at least one terminal box in a further downward direction; a lateral space; and a seal plate covering the lateral space at an upper end of the lateral space.
Abstract:
In a method for testing the thermally induced unbalance of a rotating machine part, in particular the rotor of a turbogenerator, the rotating machine part or the rotor balanced at normal temperature is brought in the demounted state first to nominal rotational speed and held at this, while its temperature is varied and, at the same time, the transient variations in oscillations of the rotating machine part or rotor which are caused are measured. During the test, the rotating machine part or the rotor is surrounded at least partially by a closed heating cell, a cooling medium flows around and/or flows through the rotating machine part or the rotor in the heating cell, and the heating of the rotating machine part or of the rotor takes place essentially due to the flow-dynamic losses arising from the interaction of the rotating machine part or of the rotor with the circulating cooling medium.
Abstract:
A turbo generator (1), including a stator and a rotor (2), has a rotating bell type exciter (3) connected to one end of the rotor (2) and the exciter (3) being equipped with at least one cooler (7). An axial duct (11) with a guide (12) is provided between a cylindrical housing (13) and the outer circumference of the bell type exciter (3). Thus, drawbacks of the prior art are mitigated and the efficiency of the bell type exciter is increased by recovering the dynamic energy of the cooling fluid flow.