Abstract:
In one embodiment, a light sensor includes four cell arrays, one for each color of the Bayer pattern, and four lenses each focusing the light coming from the scene to be captured on a respective cell array. The lenses are oriented such that at least a second green image, commonly provided by the fourth cell array, is both horizontally and vertically shifted (spaced) apart by half a pixel pitch from a first (reference) green image. In a second embodiment, the four lenses are oriented such that the red and blue images are respectively shifted (spaced) apart by half a pixel pitch from the first or reference green image, one horizontally and the other vertically, and the second green image is shifted (spaced) apart by half a pixel pitch from the reference green image both horizontally and vertically.
Abstract:
In one embodiment, a light sensor includes four cell arrays, one for each color of the Bayer pattern, and four lenses each focusing the light coming from the scene to be captured on a respective cell array. The lenses are oriented such that at least a second green image, commonly provided by the fourth cell array, is both horizontally and vertically shifted (spaced) apart by half a pixel pitch from a first (reference) green image. In a second embodiment, the four lenses are oriented such that the red and blue images are respectively shifted (spaced) apart by half a pixel pitch from the first or reference green image, one horizontally and the other vertically, and the second green image is shifted (spaced) apart by half a pixel pitch from the reference green image both horizontally and vertically.
Abstract:
A method calculates statistical parameters in function of stochastic momentums of the pixel intensities of a same primary color or complementary hue of a first working window (2k+1)×(2k+1), and of at least a second working window of smaller size, both centered on the pixel to be filtered and in choosing, as a function of the values of these statistical parameters, for each pixel of the color image to be filtered, the most appropriate filtering algorithm for enhancing as much as possible the contour sharpness and reducing noise and artifacts.
Abstract:
Subdivision per basic color channels of grey level data generated by a color sensor is no longer required according to a novel color interpolation method of an image acquired by a digital color sensor generating grey levels for each image pixel as a function of the filter applied to the sensor by interpolating the values of missing colors of each image pixel for generating triplets or pairs of values of primary colors or complementary base hues for each image pixel. The method may include calculating spatial variation gradients of primary colors or complementary base hues for each image pixel and storing the information of directional variation of primary color or complementary base hue in look-up tables pertaining to each pixel. The method may further include interpolating color values of each image pixel considering the directional variation information of the respective values of primary colors or complementary hues stored in the respective look-up tables of the pixel for generating the multiple distinct values for each image pixel.
Abstract:
Color image signals, as derived, e.g., by interpolating the output from a color filter array are arranged in pixels, each pixel having associated detected color information for a first color as well as undetected filled-in color information for at least a second and a third color. The images are thus exposed to false color and zipper effect artifacts, and are subject to processing preferably including the steps of: checking the images for the presence of zipper effect artifacts, and i) if the checking reveals the presence of zipper effect artifacts, applying a zipper effect removal process to the image signals; ii) if the checking fails to reveal the presence of zipper effect artifacts, applying a false color removal process to the image signals. False color and zipper effect artifacts are thus preferably both reduced by adaptively using the zipper effect removal process and the false color removal process.
Abstract:
A method for transforming a matrix representation of pixels of an image into a vector representation of the image involves partition of the image into contiguous homogeneous regions by applying a watershed type morphologic algorithm to the matrix representation of pixels and identifying the contours of the contiguous homogeneous regions by applying a vector code contouring algorithm of the chain-code type to every region. By selecting quantization level of the gradient, improved image quality, dimensions and noise are achieved.
Abstract:
A method calculates statistical parameters in function of stochastic momentums of the pixel intensities of a same primary color or complementary hue of a first working window (2k+1)×(2k+1), and of at least a second working window of smaller size, both centered on the pixel to be filtered and in choosing, as a function of the values of these statistical parameters, for each pixel of the color image to be filtered, the most appropriate filtering algorithm for enhancing as much as possible the contour sharpness and reducing noise and artifacts.
Abstract:
A raster to vector conversion method of an initial digital image including a pixel matrix, includes generating a digital image divided into polygons by dividing the initial digital image into a plurality of base triangles and defining similarity criteria depending on at least one parameter. The conversion method also includes an iterative operation to process the digital image divided into polygons, selecting pairs of polygons adjacent to each other and to satisfy the similarity criteria and merging together the selected polygons.