摘要:
The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
摘要:
A metal oxide powder includes a powder feed material structured and arranged to form molten droplets when melted in a plasma stream. The molten droplets are structured and arranged to form frozen spherical droplets under free-fall conditions such that said molten droplets have ample time for complete in-flight solidification before reaching a collection chamber.
摘要:
A metal oxide powder includes a powder feed material structured and arranged to form molten droplets when melted in a plasma stream. The molten droplets are structured and arranged to form frozen spherical droplets under free-fall conditions such that said molten droplets have ample time for complete in-flight solidification before reaching a collection chamber.
摘要:
The invention is directed to a ceramic material for use in thermal barriers for high temperature cycling applications and high temperature abradable coatings. The material is an alloy formed predominantly from ultra-pure zirconia (ZrO2) and/or hafnia (HfO2) that has uncharacteristically high sintering resistance to achieve a high service lifetime and low thermal conductivity to achieve high operating temperatures. In the material, oxide impurities such as soda (Na2O), silica (SiO2), alumina (Al2O3), titania (TiO2), hematite (Fe2O3), calcia (CaO), and magnesia (MgO) make up no more than 0.15 weight percent. The invention provides materials to produce a coating structure so that the changes in the coating microstructure over the in-service lifetime are either limited or beneficial.
摘要翻译:本发明涉及一种用于高温循环应用的热障层和高温耐磨涂层的陶瓷材料。 该材料是主要由超纯氧化锆(ZrO2)和/或铪(HfO2)形成的合金,其具有非常高的耐烧结性,以实现高使用寿命和低热导率以实现高工作温度。 在该材料中,诸如苏打(Na 2 O),二氧化硅(SiO 2),氧化铝(Al 2 O 3),二氧化钛(TiO 2),赤铁矿(Fe 2 O 3),氧化钙(CaO)和氧化镁(MgO)的氧化物杂质构成不超过0.15重量 百分。 本发明提供了用于生产涂层结构的材料,使得在使用寿命内的涂层微结构的变化是有限的或有益的。
摘要:
The present invention provides a low density and porous zirconia (ZrO2) powder partially alloyed with one or more of yttria, scandia, dysprosia, ytterbia, or any of the oxides of lanthanide or actinide. The total amount of alloying oxides should be less than about 30 weight percent. The powder is manufactured by controlled sintering or light plasma densification of physically agglomerated, or chemically derived zirconia composite powder that contains proper amounts of yttria, scandia, dysprosia, ytterbia, or any of the oxides of lanthanide or actinide, or any combination of the aforementioned oxides. The resulting coating from use of the inventive powder has a monoclinic phase content of less than 5 percent.
摘要翻译:本发明提供了一种低密度和多孔的氧化锆(ZrO 2 N 2)粉末,与氧化钇,钪,镝,镱或任何镧系元素或锕系元素的氧化物中的一种或多种部分合金化。 合金氧化物的总量应小于约30重量%。 该粉末通过物理结块或化学衍生的氧化锆复合粉末的受控烧结或轻质等离子体致密化制造,所述氧化锆复合粉末含有适量的氧化钇,猩红,镝,镱或任何镧系元素或锕系元素的氧化物,或上述 氧化物。 使用本发明粉末的所得涂层的单斜相含量小于5%。
摘要:
According to aspects of the present invention, metal oxide powder, such as yttria and alumina powder (feed material), is processed using a plasma apparatus. The process generally consists of in-flight heating and melting of the feed material by the plasma apparatus. The plasma apparatus contains a plasma torch with required power supply and cooling systems, a powder feeder, a chamber to collect the powder and a dedusting system. The heated powder forms molten spherical droplets that are rapidly cooled under free fall conditions. The plasma densification process removes some impurity oxides, modifies the morphology of the particle and increases the apparent density of the powder.
摘要:
An improved method of forming an abradable thermal barrier coating comprises providing a spray-dried powder of M-CrAlY and a solid lubricant, such as CoNiCrAlY—BN. Unlike powders provided for use with plasma spray guns, the powder is essentially free of polyester or other organic fugitive additives provided to increase porosity. The powder is applied using a combustion spray process and results in a M-CrAlY abradable coating that has an average porosity comparable to that of a plasma-applied coating but with smaller and more uniform pore distribution, and without requiring post-application heat treatments to remove fugitive materials. Deposition efficiency is also increased.
摘要:
The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
摘要:
The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
摘要:
According to aspects of the present invention, metal oxide powder, such as yttria and alumina powder (feed material), is processed using a plasma apparatus. The process generally consists of in-flight heating and melting of the feed material by the plasma apparatus. The plasma apparatus contains a plasma torch with required power supply and cooling systems, a powder feeder, a chamber to collect the powder and a dedusting system. The heated powder forms molten spherical droplets that are rapidly cooled under free fall conditions. The plasma densification process removes some impurity oxides, modifies the morphology of the particle and increases the apparent density of the powder.