摘要:
An improved method of forming an abradable thermal barrier coating comprises providing a spray-dried powder of M-CrAlY and a solid lubricant, such as CoNiCrAlY—BN. Unlike powders provided for use with plasma spray guns, the powder is essentially free of polyester or other organic fugitive additives provided to increase porosity. The powder is applied using a combustion spray process and results in a M-CrAlY abradable coating that has an average porosity comparable to that of a plasma-applied coating but with smaller and more uniform pore distribution, and without requiring post-application heat treatments to remove fugitive materials. Deposition efficiency is also increased.
摘要:
The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
摘要:
The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
摘要:
The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
摘要:
The invention is directed to a material and method for obtaining a ceramic abradable system for high temperature applications. High purity partially stabilized zirconia and/or hafnia base material has higher sintering resistance compared to conventional 6-9 weight percent yttria stabilized zirconia systems. The benefits of these systems are higher service lifetime and low thermal conductivity to achieve high operating temperatures. System includes a superalloy substrate, oxidation resistant bond coat and a thick ceramic abradable top coat. Total coating thickness is about 0.5-5 mm. In some applications an intermediate layer of high purity partially stabilized zirconia or a partially stabilized YSZ/MCrAlY cermet is applied over the oxidation resistant bond coat. In other applications an abradable system is applied on top of a grid. Additional benefits should be reduced blade wear at high operating conditions.
摘要:
The present invention provides a composite coating and a method of preparing a composite coating resistant to galling and fretting. The coating is applied to a substrate and includes a mixture of hard carbide particles in an alloy matrix or oxides and solid lubricant particles captured in a binder. The coating is produced by using a thermal spray process to apply a powder containing both the hard face or oxide phases as well as the self lubricating phases. Thus, the applied coating of the present invention combines the benefits achieved with previous thermal spray coatings in terms of wear, abrasion, heat and corrosion with those afforded by solid lubricants. In addition, the coating of the present invention provides consistently distributed surface porosity to retain liquid lubricant on the coating surface.
摘要:
The invention is directed to high purity zirconia-based and/or hafnia-based materials and coatings for high temperature cycling applications. Thermal barrier coatings made from the invention high purity material was found to have significantly improved sintering resistance relative to coatings made from current materials of lower purity. The invention materials are high purity zirconia and/or hafnia partially or fully stabilized by one or any combinations of the following stabilizers: yttria, ytterbia, scandia, lanthanide oxide and actinide oxide. Limits for impurity oxide, oxides other than the intended ingredients, that lead to significantly improved sintering resistance were discovered. High purity coating structures suitable for high temperature cycling applications and for application onto a substrate were provided. In one structure, the coating comprises a ceramic matrix, porosity and micro cracks. In another structure, the coating comprises a ceramic matrix, porosity, macro cracks and micro cracks. In another structure, the coating comprises ceramic columns and gaps between the columns. In another structure, the coating comprises ceramic columns, gaps between the columns and nodules distributing randomly in the gaps and columns.
摘要:
The invention is directed to high purity zirconia-based and/or hafnia-based materials and coatings for high temperature cycling applications. Thermal barrier coatings made from the invention high purity material was found to have significantly improved sintering resistance relative to coatings made from current materials of lower purity. The invention materials are high purity zirconia and/or hafnia partially or fully stabilized by one or any combinations of the following stabilizers: yttria, ytterbia, scandia, lanthanide oxide and actinide oxide. Limits for impurity oxide, oxides other than the intended ingredients, that lead to significantly improved sintering resistance were discovered. High purity coating structures suitable for high temperature cycling applications and for application onto a substrate were provided. In one structure, the coating comprises a ceramic matrix, porosity and micro cracks. In another structure, the coating comprises a ceramic matrix, porosity, macro cracks and micro cracks. In another structure, the coating comprises ceramic columns and gaps between the columns. In another structure, the coating comprises ceramic columns, gaps between the columns and nodules distributing randomly in the gaps and columns.
摘要:
The invention relates to a thermal spray feedstock composition that employs free flowing agglomerates formed from (a) a ceramic component that sublimes,(b) a metallic or semi-conductor material that does not sublime and (c) a binder. The invention also relates to a method for preparing the agglomerates and a method for preparing ceramic containing composite structures from the agglomerates.
摘要:
A method and a circuit configuration for operation of a bus system. A bus includes a bus control unit which controls only an arbitration and when time is exceeded during a data transmission. An actual data transmission is determined in a respective active master unit and an addressed slave unit. A characteristic of a bus cycle, such as a data length, access to a data area or a control area and a waiting cycle, is transmitted in encoded form through a multiplicity of control lines.