摘要:
The present invention provides a method for producing a distributed refractive index-type optical element which can be optically designed readily, enables to provide a desired optical element in a simple manner and has an ultraviolet ray-absorbing ability.The present invention provides a method for producing a distributed refractive index-type optical element having an ultraviolet ray-absorbing ability, which comprises of the steps of: applying a paste comprising at least one compound selected from the group consisting of a lithium compound, a potassium compound, a rubidium compound, a cesium compound, a silver compound, a copper compound and a thallium compound, an organic resin and an organic solvent onto a glass substrate comprising an alkali metal component and an ultraviolet ray-absorbing component as glass constituent components; and heat-treating the resulting substrate at a temperature lower than the softening point of the glass substrate.
摘要:
The present invention provides a method of producing a graded refractive index optical element, the method being capable of easily forming a graded refractive index distribution in a desired portion of a glass substrate without the need for a specific treatment atmosphere, and without using a molten salt. More specifically, the present invention provides a method of producing a graded refractive index optical element comprising applying a paste containing a copper compound, an organic resin and an organic solvent to a glass substrate containing an alkali metal component as a glass component, and then performing heat treatment at a temperature below the softening temperature of the glass substrate.
摘要:
The purpose of the present invention is to use chalcogenide glass to produce an infrared transmitting glass that is more suitable for mold-forming than the conventional glasses. Specifically, the invention provides an infrared transmitting glass for mold forming which contains, in molar concentrations, 2-22% of Ge, 6-34% of at least one element selected from the group consisting of Sb and Bi, 1-20% of at least one element selected from the group consisting of Sn and Zn and 58-70% of at least one element chosen from the group comprising S, Se and Te.
摘要:
The present invention provides a high-precision planar light source with a sufficiently uniform luminance and sufficient light directivity to direct light to travel in a specific direction, using a simple production process. More specifically, the invention provides: a glass substrate with light directivity produced by applying a paste containing at least one member selected from the group consisting of lithium compounds, sodium compounds, potassium compounds, rubidium compounds, cesium compounds, copper compounds, silver compounds, and thallium compounds, an organic resin, and an organic solvent to one or both sides of a glass substrate containing an alkali metal as a glass component, and then performing heat treatment at a temperature lower than the softening temperature of the glass substrate; and a planar light source using the glass substrate.
摘要:
The present invention provides a method of producing an optical element without the need for high vacuum, unlike the thin film deposition methods, and without using a molten salt. More specifically, the invention provides a method of producing an optical element comprising applying a paste containing at least one compound selected from lithium compounds, potassium compounds, rubidium compounds, cesium compounds, silver compounds, and thallium compounds, an organic resin, and an organic solvent to a glass substrate containing an alkali metal component as a glass component and then performing heat treatment at a temperature below the softening temperature of the glass substrate.
摘要:
The present invention provides a method of producing a graded refractive index optical element, the method being capable of easily forming a graded refractive index distribution in a desired portion of a glass substrate without the need for a specific treatment atmosphere, and without using a molten salt. More specifically, the present invention provides a method of producing a graded refractive index optical element comprising applying a paste containing a copper compound, an organic resin and an organic solvent to a glass substrate containing an alkali metal component as a glass component, and then performing heat treatment at a temperature below the softening temperature of the glass substrate.
摘要:
The purpose of the present invention is to use chalcogenide glass to produce an infrared transmitting glass that is more suitable for mold-forming than the conventional glasses. Specifically, the invention provides an infrared transmitting glass for mold forming which contains, in molar concentrations, 2-22% of Ge, 6-34% of at least one element selected from the group consisting of Sb and Bi, 1-20% of at least one element selected from the group consisting of Sn and Zn and 58-70% of at least one element chosen from the group comprising S, Se and Te.
摘要:
A method of readily producing a gradient optical element having infrared absorbing ability by easily forming a refractive index distribution in a desired portion of a glass substrate having infrared absorbing ability without requiring a specific treatment atmosphere nor using a molten salt.More specifically, the present invention provides a method for producing a gradient-index optical element having infrared absorbing ability, the method comprising applying a paste containing an organic resin, an organic solvent, and at least one compound selected from the group consisting of lithium compounds, potassium compounds, rubidium compounds, cesium compounds, silver compounds, copper compounds, and thallium compounds onto a glass substrate containing an alkali metal component, at least one member selected from the group consisting of iron, copper, cobalt and vanadium, and over 3 wt. % of iron, when contained singly among iron, copper, cobalt and vanadium, on an Fe2O3 basis, taking the total weight of the glass as 100 wt. %, and heating the glass substrate at a temperature below the softening temperature of the glass substrate.
摘要翻译:通过在不需要特定处理气氛的情况下容易地形成具有红外线吸收能力的玻璃基板的所需部分的折射率分布,容易地制造具有红外吸收能力的梯度光学元件的方法,也不使用熔融盐。 更具体地说,本发明提供了一种具有红外线吸收能力的梯度折射率光学元件的制造方法,该方法包括:将含有有机树脂,有机溶剂和至少一种选自锂化合物 ,钾化合物,铷化合物,铯化合物,银化合物,铜化合物和铊化合物在含有碱金属成分的玻璃基材上,选自铁,铜,钴和钒中的至少一种,以及超过3 重量 在铁,铜,钴和钒中单独含有铁,以Fe 2 O 3为基准,将玻璃的总重量计为100重量%。 %,并且在低于玻璃基板的软化温度的温度下加热玻璃基板。
摘要:
The present invention provides a method of producing an optical element without the need for high vacuum, unlike the thin film deposition methods, and without using a molten salt. More specifically, the invention provides a method of producing an optical element comprising applying a paste containing at least one compound selected from lithium compounds, potassium compounds, rubidium compounds, cesium compounds, silver compounds, and thallium compounds, an organic resin, and an organic solvent to a glass substrate containing an alkali metal component as a glass component and then performing heat treatment at a temperature below the softening temperature of the glass substrate.