Abstract:
Content-addressable memory (CAM) cells comprised of phase change material devices (PCMDs), including PCMD-based binary CAM cells (PCMD-based BCAM cells), PCMD-based ternary CAM cells (PCMD-based TCAM cells), and PCMD-based universal CAM cells (PCMD-based UCAM cells). The PCMDs of the various PCMD-based CAM cells are configured and programmed in a manner that allows a logic “0” or a logic “1” to be stored by the CAM cell. The logic value stored by a given PCMD-based CAM cell depends on the program states of the PCMDs. A program state of a PCMD is determined by whether the phase change material of the PCMD has been allowed to solidify to a crystalline, low-resistance state during a programming operation, or whether the phase change material of the PCMD is forced to solidify to an amorphous, high-resistance state during the programming operation.
Abstract:
Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. The programming control can be placed outside of the main signal path through the phase change device, reducing the impact of the associated capacitance and resistance of the device.
Abstract:
Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. The programming control can be placed outside of the main signal path through the phase change device, reducing the impact of the associated capacitance and resistance of the device.
Abstract:
Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. The programming control can be placed outside of the main signal path through the phase change device, reducing the impact of the associated capacitance and resistance of the device.
Abstract:
Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. The programming control can be placed outside of the main signal path through the phase change device, reducing the impact of the associated capacitance and resistance of the device.
Abstract:
Phase change devices, and particularly multi-terminal phase change devices, include first and second active terminals bridged together by a phase-change material whose conductivity can be modified in accordance with a control signal applied to a control electrode. This structure allows an application in which an electrical connection can be created between the two active terminals, with the control of the connection being effected using a separate terminal or terminals. Accordingly, the resistance of the heater element can be increased independently from the resistance of the path between the two active terminals. This allows the use of smaller heater elements thus requiring less current to create the same amount of Joule heating per unit area. The resistance of the heating element does not impact the total resistance of the phase change device. The programming control can be placed outside of the main signal path through the phase change device, reducing the impact of the associated capacitance and resistance of the device.
Abstract:
Reconfigurable electronic structures and circuits using programmable, non-volatile memory elements. The programmable, non-volatile memory elements may perform the functions of storage and/or a switch to produce components such as crossbars, multiplexers, look-up tables (LUTs) and other logic circuits used in programmable logic structures (e.g., (FPGAs)). The programmable, non-volatile memory elements comprise one or more structures based on Phase Change Memory, Programmable Metallization, Carbon Nano-Electromechanical (CNT-NEM), or Metal Nano-Electromechanical device technologies.