Abstract:
A photovoltaic (PV) mounting system includes at least one PV module, a pair of metallic rail sections, and a grounding bar connected to each end of the metallic rail sections for grounding the metallic rail sections. The system also includes a wiring harness for electrically connecting several PV modules, a locking cover for covering and protecting the wiring harness, a standard connector box electrically connected to one end of the wiring harness, and a home run cable electrically connected to the connector box. A method for grounding the PV mounting system is also disclosed.
Abstract:
An integral solar module power conditioning system includes one or more solar module support frames. Each frame includes a plurality of plug-and-play electrical connectors integrated therewith. A microinverter or microinverter connector is also integrated with each frame. Each frame is configured to receive a respective solar electric module and to carry electrical power through a plurality of solar electric modules and corresponding microinverters connected together via a plurality of solar module support frames connected together via the plurality of integrated plug-and-play electrical connectors.
Abstract:
A photovoltaic roofing system and a method of installing the photovoltaic ridge cap structure have been provided. The photovoltaic roofing system includes a ridge cap adapted to cover a ridge of a roof structure. The system also includes at least one photovoltaic cell disposed within the ridge cap. The method of installing a photovoltaic ridge cap structure includes mounting the ridge cap over multiple photovoltaic cells along a ridge of a roof structure. The method further includes routing electrical leads from each photovoltaic cell through one or more openings along the ridge of the roof structure.
Abstract:
A photovoltaic framed module array apparatus for mounting a first framed photovoltaic (PV) module and a second framed PV module is provided. The photovoltaic framed module array apparatus comprises a first rail. The first rail includes an insert slot for accommodating an insert edge of the first framed PV module, and a capture slot for accommodating a capture edge of the second framed PV module. The capture slot is positioned substantively parallel to the insert slot.
Abstract:
A method for applying a fixed image onto at least one surface of a component in an electrochemical device is described. The component is usually formed of an alumina material. An image-forming material is first applied onto the component surface in its green state. The mark or image is applied in a desired pattern by an additive process, such as direct-write or screen-printing. The component is then heated at a sintering temperature sufficient to ensure conversion from the green state into a fired ceramic state. The sintering temperatures are also sufficient to fix the image upon the surface of the component. The image can be read by the human eye, or by various machine-readable techniques. Related methods for monitoring the location and status of a ceramic electrochemical cell component during its manufacture and during other processing steps are also described.
Abstract:
A terminal apparatus for an energy storage cell is presently disclosed. The terminal apparatus includes a terminal body with a peripheral edge extending substantially around a perimeter of the terminal body such that the terminal body is configured to be secured to a cell housing to retain an electrochemical cell in the cell housing, a terminal connector extending from the peripheral edge forming a first terminal for an energy storage cell, a sealable vacuum port extending through the terminal body, and an aperture in the terminal body configured to receive a second terminal of the energy storage cell. A method of manufacturing an energy storage cell is also disclosed.
Abstract:
Manufacturable and serviceable packaging configurations for multi-cell array batteries. A cell alignment structure is provided for positioning and securing an array of electrochemical cells. An inner battery packaging assembly is also provided having the cell alignment structure, a base plate configured to be disposed below the cell alignment structure, and a removable cover configured to fit over the cell alignment structure and attach to the base plate. Furthermore, an outer battery packaging assembly is provided having the inner battery packaging assembly, an outer support plate configured to be disposed below the inner battery packaging assembly, a removable thermal insulating material surrounding the inner battery packaging assembly, and a removable outer battery cover configured to fit over the inner battery packaging and over the surrounding thermal insulating material and attach to the outer support plate.
Abstract:
A mounting system is presented. An embodiment of a mounting system that includes a support platform configured to fasten the mounting system to a mounting surface. The mounting system further includes a stud operatively coupled to the support platform and disposed substantially perpendicular to the support platform. In addition, the mounting system includes an elevating unit operatively coupled to the stud, wherein the elevating unit includes a fastener operatively coupled to one end of the stud and configured to vary a height of the mounting system, and a rail-clip coupled to the fastener, wherein a rotational motion of the rail-clip is independent of a rotational motion of the fastener. Furthermore, the mounting system includes a rail operatively coupled to the rail-clip and configured to support at least one module.
Abstract:
An integral solar module power conditioning system includes one or more solar module support frames. Each frame includes a plurality of plug-and-play electrical connectors integrated therewith. A microinverter or microinverter connector is also integrated with each frame. Each frame is configured to receive a respective solar electric module and to carry electrical power through a plurality of solar electric modules and corresponding microinverters connected together via a plurality of solar module support frames connected together via the plurality of integrated plug-and-play electrical connectors.
Abstract:
A tin alloy bath with controlled iron content is used for coating a niobium-base substrate with tin in a manufacturing process for triniobium tin superconductor. One hundred twenty-five parts per million by weight or less of iron is used in tin alloy baths to increase the reaction kinetics of the formation of the superconductor material.