-
公开(公告)号:US12268475B2
公开(公告)日:2025-04-08
申请号:US18927698
申请日:2024-10-25
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. Islam
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/14 , G01J3/28 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00 , A61C1/00 , G01J3/12 , G01J3/18 , G01M3/38 , G01N21/85 , G01N21/95 , H01S3/00 , H01S3/067 , H01S3/30
Abstract: A wearable device to measure a user's physiological parameters comprising one or more biosensors, as well as a light source comprising light emitting diodes, lenses for directing light towards tissue of the user comprising blood vessels, and a detection system receiving reflected tissue light. The physiological parameters, for example hypertension, are measured with a differential measurement. For example, the physiological parameters may be associated with pulse rate and blood flow. The output signal is associated with the physiological parameters, and artificial intelligence may be used in making decisions regarding the output signal. Signal-to-noise ratio of the output signal may be improved by synchronizing the detection system to the light source, increasing light intensity, and detecting a change. The wearable device is configured to determine that is being worn by the user and may be configured to communicate with a smartphone or tablet.
-
公开(公告)号:US12226188B2
公开(公告)日:2025-02-18
申请号:US18118013
申请日:2023-03-06
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. Islam
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/14 , G01J3/28 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00 , A61C1/00 , G01J3/12 , G01J3/18 , G01M3/38 , G01N21/85 , G01N21/95 , H01S3/00 , H01S3/067 , H01S3/30
Abstract: A measurement system comprising one or more semiconductor diodes configured to penetrate tissue comprising skin. The detection system comprising a camera, which may also include a direct or indirect time-of-flight sensor. The detection system synchronized to the pulsing of the semiconductor diodes, and the camera further coupled to a processor. The detection system non-invasively measuring blood within the skin, measuring hemoglobin absorption between 700 to 1300 nm, and the processor deriving physiological parameters and comparing properties between different spatial locations and variation over time. The semiconductor diodes may comprise vertical cavity surface emitting lasers, and the detection system may comprise single photon avalanche photodiodes. The measurement system may be used to observe eye parameters and differential blood flow. The system may be used with photo-bio-modulation therapy, or it may be used in advanced driver monitoring systems for multiple functions including head pose, eye tracking, facial authentication, and smart restraint control systems.
-
公开(公告)号:US20250049326A1
公开(公告)日:2025-02-13
申请号:US18927698
申请日:2024-10-25
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C1/00 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/12 , G01J3/14 , G01J3/18 , G01J3/28 , G01J3/42 , G01J3/453 , G01M3/38 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/95 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00 , H01S3/00 , H01S3/067 , H01S3/30
Abstract: A wearable device to measure a user's physiological parameters comprising one or more biosensors, as well as a light source comprising light emitting diodes, lenses for directing light towards tissue of the user comprising blood vessels, and a detection system receiving reflected tissue light. The physiological parameters, for example hypertension, are measured with a differential measurement. For example, the physiological parameters may be associated with pulse rate and blood flow. The output signal is associated with the physiological parameters, and artificial intelligence may be used in making decisions regarding the output signal. Signal-to-noise ratio of the output signal may be improved by synchronizing the detection system to the light source, increasing light intensity, and detecting a change. The wearable device is configured to determine that is being worn by the user and may be configured to communicate with a smartphone or tablet.
-
公开(公告)号:US20250009232A1
公开(公告)日:2025-01-09
申请号:US18891125
申请日:2024-09-20
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C1/00 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/12 , G01J3/14 , G01J3/18 , G01J3/28 , G01J3/42 , G01J3/453 , G01M3/38 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/95 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00 , H01S3/00 , H01S3/067 , H01S3/30
Abstract: A remote sensing system comprising laser diodes with Bragg reflectors generating pulsed light that is directed to an object. A detection system receiving some of the light reflected from the object and coupled to a processor configured to measure a time-of-flight. The pulsing may have a phase associated with the modulation frequency, or nanosecond pulses may be used for the measurement. The remote sensing system including the processor is further configured to provide time and position data for a user. The object may comprise the user capable of laying on a supporting surface. The remote sensing system may also be coupled to a camera system to capture images, which may be combined with the time-of-flight measurement. Artificial intelligence may be used to make decisions associated with the images or the time-of-flight measurement. The processor may be coupled to non-transitory computer readable medium and may communicate data to a cloud server.
-
公开(公告)号:US20240398237A1
公开(公告)日:2024-12-05
申请号:US18802879
申请日:2024-08-13
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C1/00 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/12 , G01J3/14 , G01J3/18 , G01J3/28 , G01J3/42 , G01J3/453 , G01M3/38 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/95 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00 , H01S3/00 , H01S3/067 , H01S3/30
Abstract: A measurement system with active illumination using pulsed semiconductor diodes and a detection system comprising a camera imager with lenses and spectral filters that is synchronized to the pulsed diodes. The light generated by the diodes may comprise visible or near-infrared wavelengths. The measurement system may also comprise a time-of-flight sensor or a beam splitter to separate the diode light into a plurality of spatially separated lights. The detection system may be configured to receive light reflected from tissue comprising skin and may be configured to perform a differential measurement between a hand and another region of tissue. The measurement system including a processor may be configured to identify veins in the hand or measure oxygen level in blood. The system may be used to identify an object or to measure physiological parameters. The system may also be coupled to a cloud service and use artificial intelligence in making decisions.
-
6.
公开(公告)号:US11678805B2
公开(公告)日:2023-06-20
申请号:US17832340
申请日:2022-06-03
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. Islam
IPC: A61B5/00 , G01J3/10 , G01J3/28 , G01J3/14 , G01J3/453 , G01J3/42 , G01J3/02 , G01N21/35 , G16H40/67 , G01N21/359 , A61B5/145 , G01N33/15 , G01N33/49 , G01N21/3563 , G01N21/39 , G01N33/02 , G01N33/44 , G01N21/88 , A61B5/1455 , G16Z99/00 , A61C19/04 , G01N21/3504 , H01S3/30 , G01J3/18 , G01J3/12 , G01N21/85 , G01N21/95 , H01S3/067 , H01S3/00 , G01M3/38 , A61C1/00
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/1455 , A61B5/14532 , A61B5/14546 , A61B5/4547 , A61B5/6801 , A61B5/7203 , A61B5/7257 , A61B5/742 , A61B5/7405 , A61C19/04 , G01J3/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/359 , G01N21/3563 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G16H40/67 , G16Z99/00 , A61B5/0024 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , A61C1/0046 , G01J3/1838 , G01J2003/104 , G01J2003/1208 , G01J2003/2826 , G01M3/38 , G01N21/85 , G01N21/9508 , G01N2021/3513 , G01N2021/3595 , G01N2021/399 , G01N2201/061 , G01N2201/062 , G01N2201/06113 , G01N2201/08 , G01N2201/12 , G01N2201/129 , H01S3/0092 , H01S3/06758 , H01S3/302 , Y02A90/10
Abstract: An active remote sensing system is provided with an array of laser diodes that generate light directed to an object having one or more optical wavelengths that include at least one near-infrared wavelength between 700 nanometers and 2500 nanometers. One of the laser diodes pulses with pulse duration of approximately 0.5 to 2 nanoseconds at repetition rate between one kilohertz and about 100 megahertz. A beam splitter receives the laser light, separates the light into a plurality of spatially separated lights and directs the lights to the object. A detection system includes a photodiode array synchronized to the array of laser diodes and performs a time-of-flight measurement by measuring a temporal distribution of photons received from the object. The time-of-flight measurement is combined with images from a camera system, and the remote sensing system is configured to be coupled to a wearable device, a smart phone or a tablet.
-
公开(公告)号:US20220308034A1
公开(公告)日:2022-09-29
申请号:US17832340
申请日:2022-06-03
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. ISLAM
IPC: G01N33/15 , G01N21/3504 , G01N21/359 , G01J3/02 , G01J3/42 , A61B5/00 , A61B5/145 , A61B5/1455 , G01J3/10 , G01J3/28 , G01J3/453 , G01N21/3563 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/44 , G01N33/49
Abstract: An active remote sensing system is provided with an array of laser diodes that generate light directed to an object having one or more optical wavelengths that include at least one near-infrared wavelength between 600 nanometers and 1000 nanometers. One of the laser diodes pulses at a modulation frequency between 10 Megahertz and 1 Gigahertz and has a phase associated with the modulation frequency. A detection system includes a photo-detector, a lens, a spectral filter at an input to the photo-detector, and a processor that processes digitized signals received from the photo-detector to generate an output signal. The detection system uses a lock-in technique that synchronizes pulsing the one laser diode. The active remote sensing system is configured to be mounted on a vehicle or an airborne platform to provide distance information based on a time-of-flight measurement.
-
公开(公告)号:US20200064189A1
公开(公告)日:2020-02-27
申请号:US16673592
申请日:2019-11-04
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. ISLAM
IPC: G01J3/10 , H01S3/067 , H01S3/30 , G01B9/02 , G01J3/02 , H01S5/00 , H01S5/10 , H01S5/14 , G01J3/42 , G02B6/293 , G02F1/365 , H01S3/094 , H01S5/40
Abstract: A diagnostic system is provided with a plurality of semiconductor light emitters, each configured to generate an optical beam, and a beam combiner to generate a multiplexed optical beam. An optical fiber or waveguide communicates at least a portion of the multiplexed optical beam to form an output beam, wherein the output beam is pulsed. A filter, coupled to at least one of a lens and a mirror to receive at least a portion of the output beam, forms an output light. A beam splitter splits the light into a sample arm and a reference arm and directs at least a portion of the sample arm light to a sample. A detection system is configured to receive from the sample at least a portion of reflected sample light, to generate a sample detector output, and to use a lock-in technique with the pulsed output beam.
-
公开(公告)号:US10466102B2
公开(公告)日:2019-11-05
申请号:US16028473
申请日:2018-07-06
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. Islam
IPC: G01J3/10 , G02F1/365 , H01S5/00 , H01S3/067 , H01S3/30 , G01B9/02 , G01J3/02 , H01S5/10 , H01S5/14 , G01J3/42 , G02B6/293 , H01S3/094 , H01S5/40 , G02F1/35 , H01S3/102
Abstract: A spectroscopy system includes a light source having an input light source, including semiconductor diodes generating an input beam with a wavelength shorter than 2.5 microns. Cladding-pumped fiber amplifiers receive the input beam and form an amplified optical beam having a spectral width. A nonlinear element broadens the spectral width of the amplified optical beam to 100 nm or more through a nonlinear effect forming an output beam that is pulsed. A filter is coupled to at least one of a lens and a mirror that receives the output beam and delivers the filtered output beam to a sample. A detection system includes detectors configured to receive the output beam reflected or transmitted from the sample. The detection system is configured to use a lock-in technique with the pulsed output beam and the spectroscopy system is adapted to detect chemicals in the sample.
-
公开(公告)号:US10271904B2
公开(公告)日:2019-04-30
申请号:US14719262
申请日:2015-05-21
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. Islam
IPC: A61B18/20 , A61F9/008 , A61B18/22 , H01S3/00 , H01S3/067 , H01S3/094 , H01S3/16 , H01S3/30 , A61B18/00
Abstract: A system and method for selectively processing target tissue material in a patient include a laser subsystem for generating an output laser beam and a catheter assembly including an optical fiber for guiding the output laser beam. The beam has a predetermined selected wavelength between 900 nm and 2600 nm. The catheter assembly is sized to extend through an opening in a first part of the patient to a tissue material processing site within the patient. A beam delivery and focusing subsystem includes a focal distance, which may be adjustable, that positions the beam into at least one focused spot on the target tissue material disposed within a second part of the patient for a duration sufficient to allow laser energy to be absorbed by the target tissue material and converted to heat to produce a desired physical change in the target tissue material without causing undesirable changes to adjacent non-target material.
-
-
-
-
-
-
-
-
-