摘要:
A inspection image data of the chip A is captured and the data representing the amount of correction of flare corresponded to the chip A is appropriately loaded from the map storage block. Next, a inspection image of the chip A′ is captured, and the data representing the amount of correction of flare corresponded to the chip A′ is loaded from the flare map storage block as the amount of shifting of the edge of the contour of the pattern. The amount of correction is converted, by a correction data generation block which is a correction data generator, into the amount of geometrical correction of pattern which provides correction data. In the comparison block, the images of the geometry of two chips are compared and corrected on the amount of correction of flare generated by a correction data generation block, to thereby judge whether defect is found or not.
摘要:
A reflective-type mask having a main surface including a pattern region in the main surface, the pattern region including a multilayer reflective film which reflects the exposure light and a first absorber pattern on the multilayer reflective film, the first absorber pattern including a pattern which absorbs the exposure light and corresponds to a pattern to be formed on a wafer, a light shielding region in the main surface for preventing a region on the wafer excluding a predetermined region from being irradiated with the exposure light when the main surface is irradiated with the exposure light for transferring the first absorber pattern to the predetermined region, the light shielding region including a second absorber pattern having a lower reflectivity to the exposure light than the first absorber pattern and being provided in a position differing from a position in which the first absorber pattern is provided.
摘要:
A reflective exposure mask, a method of manufacturing the reflective exposure mask, and a method of manufacturing a semiconductor device for improving yield in an EUVL (extreme-ultraviolet lithography) using a reflective exposure mask formed to a reflective exposure mask blank are provided. A reflective exposure mask for EUVL includes a low-reflectivity conductor film, a multilayer reflecting film, and an absorber formed on a mask substrate in sequence. The low-reflectivity conductor film has a reflectivity lower than reflectivities of the multilayer reflecting film and the absorber. The absorber forms an absorber pattern in a pattern region of the mask substrate. The multilayer reflecting film has a light-shielding band formed by being removed in a portion surrounding an outer periphery of the pattern region in a groove-like shape. The low-reflectivity conductor film is exposed at a bottom portion of the light-shielding band in a groove-like shape.
摘要:
A system and method are provided for compensating for proximity effects between selected adjacent portions of pattern elements on an integrated circuit wafer where it is determined by simulation that undesirable resist patterns will result. The subject lithography system includes projecting an electron beam onto the wafer through an aperture plate of pattern elements to obtain the desired beam pattern. An aperture mask includes a plurality of first portions corresponding to first wafer circuit element portions spaced for avoiding proximity effects on the wafer and a plurality of second portions corresponding to second element portions spaced for obtaining proximity effects between elements on the wafer. The plurality of second portions are sized to have an increased adjacent spacing relative to a resultant adjacent spacing of the corresponding second element portions whereby the resultant adjacent spacing of the second element portions on the wafer is selectively reduced by the proximity effects. Alternatively, or in addition, a wire mesh is provided at the second portions of the aperture plate to reduce the beam intensity for corresponding reduction of the proximity effects.
摘要:
A inspection image data of the chip A is captured and the data representing the amount of correction of flare corresponded to the chip A is appropriately loaded from the map storage block. Next, a inspection image of the chip A′ is captured, and the data representing the amount of correction of flare corresponded to the chip A′ is loaded from the flare map storage block as the amount of shifting of the edge of the contour of the pattern. The amount of correction is converted, by a correction data generation block which is a correction data generator, into the amount of geometrical correction of pattern which provides correction data. In the comparison block, the images of the geometry of two chips are compared and corrected on the amount of correction of flare generated by a correction data generation block, to thereby judge whether defect is found or not.
摘要:
A reflective-type mask having a main surface including a pattern region in the main surface, the pattern region including a multilayer reflective film which reflects the exposure light and a first absorber pattern on the multilayer reflective film, the first absorber pattern including a pattern which absorbs the exposure light and corresponds to a pattern to be formed on a wafer, a light shielding region in the main surface for preventing a region on the wafer excluding a predetermined region from being irradiated with the exposure light when the main surface is irradiated with the exposure light for transferring the first absorber pattern to the predetermined region, the light shielding region including a second absorber pattern having a lower reflectivity to the exposure light than the first absorber pattern and being provided in a position differing from a position in which the first absorber pattern is provided.
摘要:
A reflection-type exposure mask includes a multilayer reflective film in a main surface and serving as a high reflective region to an exposure light, and an absorber pattern on the multilayer reflective film and serving as a low reflective region to the exposure light, wherein a phase difference between reflection lights of the exposure light from the multilayer reflective film and the absorber pattern is in a range of 180°±10°, and the absorber pattern includes first and second linear patterns having longitudinal directions intersecting at right angles, contrast values of optical images of the first and second linear patterns formed on a wafer is to be 0.6 or more when one of the longitudinal directions of the first and second patterns agree with an incident direction of the exposure light to the main surface viewed from above the main surface.
摘要:
A system and method are provided for compensating for proximity effects between selected adjacent portions of pattern elements on an integrated circuit wafer where it is determined by simulation that undesirable resist patterns will result. The subject lithography system includes projecting an electron beam onto the wafer through an aperture plate of pattern elements to obtain the desired beam pattern. An aperture mask includes a plurality of first portions corresponding to first wafer circuit element portions spaced for avoiding proximity effects on the wafer and a plurality of second portions corresponding to second element portions spaced for obtaining proximity effects between elements on the wafer. The plurality of second portions are sized to have an increased adjacent spacing relative to a resultant adjacent spacing of the corresponding second element portions whereby the resultant adjacent spacing of the second element portions on the wafer is selectively reduced by the proximity effects. Alternatively, or in addition, a wire mesh is provided at the second portions of the aperture plate to reduce the beam intensity for corresponding reduction of the proximity effects.
摘要:
There is provided a method of high-sensitively detecting both of a phase defect existing in a mask blank and a phase defect remaining after manufacturing an EUVL mask. When the mask blank is inspected, EUV light having illumination NA to be within an inner NA but a larger value is irradiated. When the EUVL mask is inspected, by using a dark-field imaging optical system including a center shielding portion for shielding EUV light and a linear shielding portion for shielding the EUV light whose width is smaller than a diameter of the center shielding portion, the center shielding portion and the linear shielding portion being included in a pupil plane, the EUV light having illumination NA as large as or smaller than the width of the linear shielding portion is irradiated.
摘要:
There is provided a method of high-sensitively detecting both of a phase defect existing in a mask blank and a phase defect remaining after manufacturing an EUVL mask. When the mask blank is inspected, EUV light having illumination NA to be within an inner NA but a larger value is irradiated. When the EUVL mask is inspected, by using a dark-field imaging optical system including a center shielding portion for shielding EUV light and a linear shielding portion for shielding the EUV light whose width is smaller than a diameter of the center shielding portion, the center shielding portion and the linear shielding portion being included in a pupil plane, the EUV light having illumination NA as large as or smaller than the width of the linear shielding portion is irradiated.