Abstract:
Systems, apparatus combinations and methods for producing a powder coating are provided wherein a stream of a powder coating precursor including at least one resin and at least one additional powder coating ingredient is contacted with a process fluid effective to reduce the viscosity of the powder coating precursor to allow processing of the powder coating precursor at a lower temperature.
Abstract:
Powdered coating compositions and methods for obtaining improved wrinkled finishes with epoxy powder coatings are provided which utilize curing agents other than commercially available methylenedisalicylic acid.
Abstract:
Coating powder compositions are formulated with epoxy-functional acrylic resins, and as curatives 5 to 50 phr poly-carboxylic functional polyesters and 5 to 40 phr poly-carboxylic functional crystalline curatives.
Abstract:
A process for preparing a poly(arylene sulfide) and copolymer thereof from a poly(arylene sulfide disulfide) is provided which comprises contacting the poly(arylene sulfide disulfide) with a polyhalo-substituted cyclic compound having unsaturation between adjacent ring carbon atoms and having halogen atoms attached to the ring carbon atoms in a polar organic compound and a basic compound at an elevated temperature. Alternatively, the poly(arylene sulfide disulfide) can be substantially dissolved in the polar organic solvent at elevated temperature to form fragments which can be contacted with the polyhalo-substituted cyclic compound in a polar organic compound and a basic compound at an elevated temperature. The fragments also can be isolated, recovered and then contacted with the polyhalo-substituted cyclic compound in a polar organic compound and a basic compound at an elevated temperature.
Abstract:
An encapsulated titanium dioxide comprising an intimate mixture of A) crude titanium dioxide in finely divided particulate form, and B) from 0.1 wt % to 10 wt %, based on the wt % of titanium dioxide of at least one (meth)acrylic polymer and method of preparation.
Abstract:
A powder coating composition comprising an intimate mixture of at least one film forming resin binder and from 0.1 to 50 wt. %, based on the total weight of the powder coating composition, of at least one modified encapsulated titanium dioxide.
Abstract:
Powder coating compositions containing 5 to 60 wt % of spherical or near spherical particles having a median diameter of greater than 10, and most preferably of greater than 15 microns exhibit lower gloss without undesirable side effects such as loss of coating flow or creation of an “orange peel” effect.
Abstract:
Systems and apparatus combinations for producing a coating powder are provided wherein a stream of a powder coating precursor including at least one resin and at least one additional powder coating ingredient is contacted with a process fluid effective to reduce the viscosity of the powder coating precursor to allow processing of the powder coating precursor at a lower temperature.
Abstract:
Systems, apparatus combinations and methods for producing a powder coating are provided wherein a stream of a powder coating precursor including at least one resin and at least one additional powder coating ingredient is contacted with a process fluid effective to reduce the viscosity of the powder coating precursor to allow processing of the powder coating precursor at a lower temperature.
Abstract:
A coating powder for producing a high temperature resistant coating has a resin system which comprises (A) between about 50 and about 93 wt % based on total of (A) plus (B) of a silicone resin and (B) between about 7 and about 50 wt % based on total weight of (A) plus (B) of a polyhydroxyl component. The silicone resin (A) of the coating powder has organic substitutents selected from the group consisting of phenyl, methyl, C.sub.2 through C.sub.6 alkyl and mixtures thereof. The silicone resin has a viscosity of between about 500 and about 10,000 cps at 150.degree. C., a condensable hydroxyl content of between about 2 and about 4.5 wt %, and a glass transition temperature (T.sub.g) of about 55.degree. C. or above. The silicone resin preferably contains about 0.2% or less of organic solvents. The polyhydroxyl component (B) is a polyhydroxyl compound or blends of polyhydroxyl compounds with average hydroxyl equivalent weight of between 100 and 500, containing an average of at least three hydroxyl groups per molecule, and of number average molecular weight between 300 and 20,000. The blend of the silicone resin (A) and polyhydroxyl component (B) should have a combined glass transition temperature (T.sub.g) of at least about 50.degree. C.