摘要:
A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
摘要:
A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
摘要:
A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
摘要:
An apparatus for making contact with a foil conductor, in particular of a solar module, the apparatus having a housing, a first connecting region for connecting to the foil conductor, and a second connecting region with at least one contact for connecting at least one plug connector. At least one conductor rail connects the contact to the foil conductor. The conductor rail has a contact region for detachable connection to the foil conductor. The conductor rail has a terminal area for receiving electronic modules, for example a diode or lead portions. Each conductor rail is connected to the contact of the second connecting region.
摘要:
A method of manufacturing an ultrasound transducer is provided. The ultrasound transducer is activated and the activity across the transducer is measured to determine whether the activity at any area does not meet an acceptance criteria. The transducer is then modified so that the area meets the acceptance criteria. The transducer may be modified with a laser which removes material from the area which does not meet the acceptance criteria.
摘要:
A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
摘要:
A line marking assembly for applying a marking a straight line with a marking powder onto a surface is disclosed. The line marking assembly comprises two chambers configured to mount one on each side of a level. Each chamber contains a cord wound on a spool, marking powder and a tensioning assembly that exerts a constant and continuous pull on the cord. The cords from each of the chambers may be combined with a coupler. Moving the coupler back and forth between the chambers coats the cords with marking powder. Placing the assembly onto a surface and snapping the cord marks a straight line on the surface.
摘要:
A method of manufacturing an ultrasound transducer is provided. The ultrasound transducer is activated and the activity across the transducer is measured to determine whether the activity at any area does not meet an acceptance criteria. The transducer is then modified so that the area meets the acceptance criteria. The transducer may be modified with a laser which removes material from the area which does not meet the accceptance criteria.
摘要:
The present invention relates to means and method for isolating naturally-occurring microorganisms (non-pathogenic bacteria, yeasts or fungi) capable of binding toxins from microorganisms such as bacteria, viruses, fungi, yeasts, or protozoans and/or receptors for these toxins on the surface of mammalian cells, thereby making these receptors inaccessible for said toxins. The naturally-occurring microorganisms that are obtainable by the means and methods of the present invention can be used for adsorbing toxins from pathogenic microorganisms and/or blocking receptors for such toxins on the surface of mammalian cells. These toxin-receptor interactions are known to be critical for disease pathogenesis, making both the toxins and receptors a target for the naturally-occurring microorganisms of the present invention.