Abstract:
There is provided an ultrasonic transducer assembly for inspecting a sample. The assembly includes a support, a flexible printed circuit board having proximal and distal ends, the proximal end being affixed to the support and the distal end extending away from the support, one transducer or an array of transducers mounted on the support and positioned near or at the proximal end, each transducer being made from a flexible porous piezoelectric material and being operatively connected to the flexible printed circuit board, and a power unit mounted on the flexible printed circuit board and positioned near or at the distal end, the power unit being operatively connected to the flexible printed circuit board. The flexible printed circuit board comprises conductive channel(s). There are also provided methods for manufacturing the assembly and methods for inspecting the sample.
Abstract:
A system, device and method for imaging, measuring and identifying surface features in a tubular, such as a casing, wellbore, or pipe. The device comprises an ultrasound transducer for sonifying an area of the surface of the tubular, with a pulse intercepting axial locations of the sonified area at different times. Reflected signals are processed using their time of flight to interpret the reflected signals as axial locations of features on the surface of the tubular. Multiple sonified areas are partially overlapped in the axial direction to capture features redundantly. Reflections from the multiple areas are combined to remove noise and strengthen reflections from real features. A geometric model of the surface of the tubular is rendered and displayed. Capturing larger areas per frame increases the logging rate and oversampling improves the resolution and signal to noise ratio.
Abstract:
In an ultrasonic transducer assembly, a conformable ultrasonic transducer has a piezoelectric layer and electrodes able to conform to curved surfaces, and a clamp for pressing the transducer into ultrasonic contact with a curved surface. Conformability is ensured with a thin, porous piezoelectric layer and suitable electrical conductors and insulators. The ultrasonic transducer may operate without further thermal shielding under harsh environments and/or at high temperatures.
Abstract:
An ultrasound therapy system is provided that can include any number of features. In some embodiments, the custom transducer housings can be manufactured using a rapid-prototyping method to arrange a plurality of single-element, substantially flat transducers to share a common focal point. The rapid-prototyping method can include, for example, fused-deposition modeling, 3D printing, and stereolithography. In some embodiments, the therapy system can include a plurality of transducer modules insertable into the openings of the transducer housing. Methods of manufacture are also described, including designing a transducer housing shell to a desired geometry and a plurality of acoustic focusing lenses integral to the transducer housing shell in a 3D computer aided design software, and constructing the transducer housing shell and the plurality of acoustic focusing lenses integral to the transducer housing shell using a rapid-prototyping method.
Abstract:
Disclosed is an NDT/NDI probe array and manufacturing method. The probe array includes a sheet of flexible circuit 10 with a plurality of lower pins 102 and corresponding, electrically connected, upper pins 104. The probe further comprises a backing block 12, a layer of piezoelectric ceramic 16 having a plurality of conductive elements 162, a matching layer 18 and a frame 14. An adhesive material such as epoxy is applied to the circuit, the backing, the ceramic and the matching layer, and all are aligned and stack pressed at least partially into the frame and permanently bonded in such a fashion that each of the lower pins of the flexible circuit is firmly and permanently in contact with a corresponding one of the conductive elements of the ceramic.
Abstract:
In a process plant, a first series of impedance measurements from a valve body are received. The first series of impedance measurements are stored. A second series of impedance measurements from the valve body are received. The second series of impedance measurements from the valve body are stored. The first series and second series of impedance measurements are compared. An indication of loss of integrity of the valve body is generated if the first series of impedance measurements deviates from the second series of impedance measurements.
Abstract:
An apparatus and method for testing composite structures in which ultrasonic waves are used to detect disbonds in the structures are described. The apparatus comprises a flexible structure carrying acousto-optical transducers such as fiber Bragg gratings. During use, the apparatus is mechanically and conformally coupled to the structure under test.
Abstract:
A sensing device and a method of attaching the sensing device to a target object is disclosed. The substrate of the sensing device has one or more bonding material vias that allows the bonding material used to attach the substrate to the target object to flow from one side of the substrate to the other side of the substrate. The bonding material forms rivets to secure the substrate to the target object and to secure the layers of the substrate to each other.
Abstract:
An EMAT that generates horizontally polarized shear ultrasonic waves is combined with a PZT that generates longitudinal ultrasonic waves to provide simultaneous or sequential inspection of a test component material for improved accuracy in estimating properties of the material or detecting and estimating the dimensions of defects in the material. The transducer combination is constructed so that the EMAT and PZT elements are concentric and therefore interrogate approximately the same volume of the test component material. Nonferromagnetic insulators, such as elastomers, are installed on the bottom surface of PZT component to increase the transmission and reception the ultrasonic waves into the test component. Ferromagnetic, acoustic-absorbing materials are installed on the top surface of the EMAT coil component to minimize generation of ultrasonic waves in the bias magnet.
Abstract:
An electrical switching array and method uses a programmable multi-channel analog switch with a high voltage T/R switch and voltage limiting circuit for ultrasound image system echo signal multiplexing beamforming receiver frontend circuit.