摘要:
In accordance with the principles of the invention, methods, systems, and computer-readable mediums are provided for displaying cellular analysis result data including accessing cellular analysis result data, accessing data of at least one template, and displaying the cellular analysis result data and the data of at least one template by overlaying the cellular analysis result data and the data of the at least one template, wherein the cellular analysis result data is displayed using different display attributes from the displayed data of the at least one template.
摘要:
System and method for displaying three-dimensional object scattergrams of particles are provided. In one embodiment, at least two parameters associated with at least one particle in a biological sample are detected and stored as data. An initial two-dimensional scattergram of the data is created with the two dimensions corresponding to the two parameters, and each data point corresponding to a particle in the biological sample. A data point in the initial two-dimensional scattergram is categorized into a population corresponding to a particle population. A density value of the data point is evaluated. Color data for the data point is calculated based on the evaluated density value and the categorized population. A three-dimensional location is generated based on the location in the initial two-dimensional scattergram and a property of the data point. A geometric shape centered at the generated three-dimensional location is displayed using the calculated color data.
摘要:
Methods, systems, and computer program products for the analysis of particle analyzer data are disclosed. One embodiment is a method of analyzing immature reticulocytes in a blood sample, including the steps of: preprocessing the blood sample; measuring the blood sample by a detection including a reticulocyte-maturity measurement and a light scatter measurement; analyzing blood cell distribution patterns to identify a set of reticulocyte events; differentiating immature reticulocytes from mature reticulocytes using the reticulocyte-maturity measurement and the light scatter measurement; and reporting immature reticulocytes. The immature reticulocyte fraction may be one aspect that is reported. Also another method is disclosed, having the steps of: measuring the blood sample by a detection comprising an axial light loss measurement; identifying a hard-to-ghost cell population based on the axial light loss measurement; filtering-out the hard-to-ghost cell population; and analyzing the event data to identify blood cell distribution patterns.
摘要:
Methods, systems, and computer program products for the analysis of a blood sample are disclosed. One embodiment is a method of detecting and enumerating hard-to-ghost cells in a blood sample. Another embodiments is a method of analyzing reticulocytes in a blood sample. Methods of using blood count parameters are also provided.
摘要:
Methods, systems, and computer program products for the analysis of a blood sample are disclosed. One embodiment is a method of detecting and enumerating hard-to-ghost cells in a blood sample. Another embodiments is a method of analyzing reticulocytes in a blood sample. Methods of using blood count parameters are also provided.
摘要:
Methods, systems, and computer program products for the analysis of particle analyzer data are disclosed. One embodiment is a method of analyzing immature reticulocytes in a blood sample, including the steps of: preprocessing the blood sample; measuring the blood sample by a detection including a reticulocyte-maturity measurement and a light scatter measurement; analyzing blood cell distribution patterns to identify a set of reticulocyte events; differentiating immature reticulocytes from mature reticulocytes using the reticulocyte-maturity measurement and the light scatter measurement; and reporting immature reticulocytes. The immature reticulocyte fraction may be one aspect that is reported. Also another method is disclosed, having the steps of: measuring the blood sample by a detection comprising an axial light loss measurement; identifying a hard-to-ghost cell population based on the axial light loss measurement; filtering-out the hard-to-ghost cell population; and analyzing the event data to identify blood cell distribution patterns.