Abstract:
Aspects of the present disclosure include systems for detecting light from a particle in a flow stream by spectral discrimination. Light detection systems according to certain embodiments include a wavelength separator component configured to propagate light between a first set of linear variable optical filters and a second set of linear variable optical filters where each set of linear variable optical filters is configured to pass light having predetermined sub-spectral ranges and a plurality of photodetectors positioned to detect light from each sub-spectral range across the linear variable optical filters. Systems having a light source for irradiating a particle in a flow stream and a photodetector modulator component for binning data signals generated in a plurality of photodetector channels of the light detection system are also described. Methods for detecting light with the subject systems and kits having one or more components for detecting light according to the subject methods are also provided.
Abstract:
A portable, stand-alone microfluidic interrogation device including a microprocessor and a touch-screen display. The touch-screen display can receive one or more user input to select a particular particle interrogation procedure, and subsequently show interrogation results. A microfluidic path extending through the interrogation device includes alignment structure that defines an interrogation zone in which particles carried in a fluid are urged toward single-file travel. Operable alignment structure may define sheath-, or non-sheath fluid flow. Desirably, a portion of the alignment structure is removable from the device in a tool-free procedure. The device may operate under the Coulter principle, and/or detect Stokes' shift phenomena, and/or other optically-based signal(s).
Abstract:
A microchip includes a channel permitting a sheath liquid to flow therethrough; and a microtube for introducing a sample liquid into a laminar flow of the sheath liquid flowing through the channel; wherein liquid feeding is performed in the condition where a laminar flow of the sample liquid introduced through the microtube is surrounded by the laminar flow of the sheath liquid.
Abstract:
A compact transducer system includes both an antenna subsystem and an optical transducer subsystem. The antenna subsystem may include multiple radio frequency (RF) radiating elements disposed adjacent to a ground plane. The ground plane may also serve as an optical reflector within an optical path of the optical transducer subsystem. A secondary reflector may also be provided within the optical path of the optical transducer subsystem. The secondary reflector may be formed of dielectric material (e.g., meta-material) in some embodiments to prevent undesired coupling with RF circuitry.
Abstract:
Aspects and embodiments of the instant disclosure provide a particle and/or intracellular organelle alignment agent for a particle analyzer used to analyze particles contained in a sample. An exemplary particle and/or intracellular organelle alignment agent includes an aqueous solution, a viscosity modifier, and/or a buffer.
Abstract:
An analyzing system includes an imaging cytometer having a first imaging section configured to perform an imaging of particles contained in an analyte sample to generate images, the imaging cytometer being configured to analyze the images generated by the first imaging section, and a blood cell analyzing apparatus configured to analyze particles contained in the analyte sample by at least one of an electrical resistance method and an optical analyzing method. One of the imaging cytometer and the blood cell analyzing apparatus has an analyzing section configured to produce a report of an analysis of the analyte sample based on particle information acquired by the imaging cytometer and particle information acquired by the blood cell analyzing apparatus.
Abstract:
Aspects and embodiments of the instant disclosure provide a particle and/or intracellular organelle alignment agent for a particle analyzer used to analyze particles contained in a sample. An exemplary particle and/or intracellular organelle alignment agent includes an aqueous solution, a viscosity modifier, and/or a buffer.
Abstract:
There is provided a microparticle analysis apparatus including a sample channel configured to receive liquid containing a plurality of microparticles, a first pair of electrodes configured to form an alternating electric field in at least a part of the sample channel, a measuring part configured to measure impedance between the first pair of electrodes, an analyzing part configured to calculate property values of the microparticles from the impedance measured in the measuring part, and a determining part configured to determine whether data of the impedance measured in the measuring part is derived from the microparticles.
Abstract:
A microfluidic sensor formed by stacking a plurality of substantially non-electrically conductive layers, typically formed from thin polymer films. Certain layers may carry patterned electrodes that are arranged to permit their connection to an electrical interrogation circuit. Electrodes may be disposed in a 3-dimensional array in the sensor. A fluid path through the sensor includes an orifice sized to promote single-file travel of particles. The orifice may be defined by a tunnel passing through at least one layer. Particles entrained in an electrolytic carrier fluid may be detected, or otherwise characterized, by interrogation circuitry connected to certain embodiments of the sensor. Sensors generally include portions of a fluid path disposed parallel to the layers. Sensors may operate under the Coulter principle, and/or Stokes' shift phenomena. In certain embodiments, the sensor may be carried by a cartridge, which is adapted to couple with an interrogation platform. In any case, coupling desirably places the sensor in-circuit with operable interrogation structure, as well as with a fluid-flow control device. Structure included in a cartridge may provide fluid sample loading, routing, and storage capabilities.
Abstract:
A flow cytometer including a laser, indexing structure, adjustment structure, and sensor structure. The cytometer is conventionally used with a removable microfluidic cassette, which is installed at a first position that is enforced by the indexing structure. The adjustment structure changes a relative position between an interrogation aperture of the cassette and the laser beam. Feedback from the sensor structure is used to optimize propagation of the laser through the interrogation aperture to reduce (and hopefully eliminate) autofluorescence caused by beam impingement onto the cassette.