Abstract:
A radar being carried by an aircraft includes means for transmitting an RF wave towards a target, said wave having a double form, a first waveform being composed of at least two sinusoids of different frequencies transmitted simultaneously, the radar comprising reception circuits receiving the signals reflected by the target and analysis means performing the detection of the target on the basis of the signals received. The second waveform is of the pulse type. The transmitted waveform is dependent on the relative speed of the target with respect to the carrier and on the absolute speed of the carrier.
Abstract:
The present invention relates to a method for determining the position notably the elevation of a target flying at very low altitude. An electromagnetic detection system extracts the measurement of the elevation on the basis of the amplitude of the interference signal produced by a signal emitted directly by the target and by a signal emitted by the target towards the ground then reflected by the ground towards the radar. Embodiments of the invention can notably be used within the framework of the guidance of drones in the final landing phase.
Abstract:
A multifunction airborne radar device includes a plurality of transmit antenna modules and/or receive antenna modules that are fixed relative to the aircraft, placed substantially over the surface of the aircraft so as to form transmit and receive beams, enabling targets to be detected for implementing a sense-and-avoid function. The airborne radar device may also comprise processing means for tracking the detected targets and for generating information sent to an air traffic control centre and/or to a control device on board the aircraft. The processing device may also receive data relating to the aircraft, enabling the antenna beams to be adjusted and the tracking calculations to be refined.
Abstract:
A radar includes an antennal structure, with means for transmitting an impulse signal in a band centered on F1 according to a repetition period centered on a recurrence period Tr1 and pulse width T1, with means for receiving signals by the antenna in frequency band ΔF, with a unit for processing the signals received on a set of N distance bins. The signals received are transmitted by another radar in a frequency band centered on F2 where F2−F1≦ΔF, according to a repetition period centered on a period Tr2 and pulse width T2. The signals transmitted by the two radars are asynchronous. The method comprises: slaving frequency F1 to frequency F2, by measuring the power received integrated over the N distance bins and over several recurrences, determination of period Tr2 and T2 and slaving the period centered on Tr1 to a period centered on Tr2 with Tr1=k*Tr2.
Abstract translation:雷达包括触角结构,具有根据以复现周期Tr1和脉冲宽度T1为中心的重复周期以F1为中心的频带中的脉冲信号的装置,具有用于在频带ΔF中由天线接收信号的装置, 用于处理在一组N个距离仓上接收的信号的单元。 接收到的信号根据以时间间隔Tr2和脉冲宽度T2为中心的重复周期,以F2为中心的频域F2-F1≤ΔF的另一个雷达发送。 由两个雷达发射的信号是异步的。 该方法包括:通过测量在N个距离仓上积分的功率和超过几次重复来测量频率F1到频率F2,确定周期Tr2和T2,并将以Tr1为中心的周期以Tr1为中心的周期Tr1 = k * Tr2。
Abstract:
The present invention relates to a system and a method for assisting in the decking of an aircraft on a platform, more particularly on a mobile platform comprising a decking surface, said aircraft comprising a signal transmitter, the system comprising means for determining flight commands to be executed by the aircraft, said means being at least fed by locating means of the aircraft and by means of predicting movements of the platform, the locating means comprising at least two passive sensors, spaced apart, fixed in proximity to the decking surface and able to receive the signals transmitted by the aircraft. The invention applies notably to the decking of rotary wing craft and autonomous aircraft on ships.
Abstract:
A radar includes an antennal structure, with means for transmitting an impulse signal in a band centered on F1 according to a repetition period centered on a recurrence period Tr1 and pulse width T1, with means for receiving signals by the antenna in frequency band ΔF, with a unit for processing the signals received on a set of N distance bins. The signals received are transmitted by another radar in a frequency band centered on F2 where F2−F1≦ΔF, according to a repetition period centered on a period Tr2 and pulse width T2. The signals transmitted by the two radars are asynchronous. The method comprises: slaving frequency F1 to frequency F2, by measuring the power received integrated over the N distance bins and over several recurrences, determination of period Tr2 and T2 and slaving the period centered on Tr1 to a period centered on Tr2 with Tr1=k*Tr2.
Abstract:
A location and guidance system including a flying craft and a reception device. The flying craft includes a plurality of antennas distributed around its fuselage and emitting rearwards with rectilinear polarization, the emitted signals being specific to each antenna, the positions and the dimensions of the antennas being configured such that the body of the flying craft avoids by masking for at least one antenna the reflections of the signal emitted by this antenna off the ground or off lateral obstacles whatever the position of the flying craft. The reception device is placed substantially on a trajectory axis of the flying craft and configured to be oriented to sight the rear thereof and includes at least two single-pulse antennas operating in orthogonal planes determines a position of the flying craft by analysing the emitted signals received by the antennas of the reception device.
Abstract:
Use of an antennal base formed of two antennas which pick up the emissions present and produce two radioelectric signals S1 and S2. These two signals are used to produce at least one intermediate-frequency signal Fl by demodulation of one of the two signals by the other (autotransposition). The demodulation is carried out by firstly transposing one of the signals, S1 for example, around a given frequency F1, the signal S2 being preserved around its initial central frequency F0. Thus, whatever the central frequency F0 of the emission picked up by the antennas, the demodulation produces a signal of central frequency F1, thereafter demodulated into a given intermediate frequency Fl by means of a local oscillator of constant frequency F2=F1+Fl. The device is applied to the production of a device for detecting emissions and for characterizing the emissions picked up.
Abstract translation:使用由两个天线形成的触角基,其拾取存在的发射并产生两个放射电信号S1和S2。 这两个信号用于通过用另一个(自动转置)解调两个信号之一来产生至少一个中频信号F1。 通过首先将信号S1之一(例如,绕给定频率F1)进行转换,信号S2围绕其初始中心频率F0保持来进行解调。 因此,无论由天线拾取的发射的中心频率F0如何,解调产生中心频率F1的信号,然后借助恒定频率F2 = F1 + F1的本地振荡器解调成给定的中间频率F1。 该装置适用于生产用于检测排放物和表征所拾取的排放物的装置。
Abstract:
A multifunction airborne radar device includes a plurality of transmit antenna modules and/or receive antenna modules that are fixed relative to the aircraft, placed substantially over the surface of the aircraft so as to form transmit and receive beams, enabling targets to be detected for implementing a sense-and-avoid function. The airborne radar device may also comprise processing means for tracking the detected targets and for generating information sent to an air traffic control center and/or to a control device on board the aircraft. The processing device may also receive data relating to the aircraft, enabling the antenna beams to be adjusted and the tracking calculations to be refined.
Abstract:
A radar being carried by an aircraft includes means for transmitting an RF wave towards a target, said wave having a double form, a first waveform being composed of at least two sinusoids of different frequencies transmitted simultaneously, the radar comprising reception circuits receiving the signals reflected by the target and analysis means performing the detection of the target on the basis of the signals received. The second waveform is of the pulse type. The transmitted waveform is dependent on the relative speed of the target with respect to the carrier and on the absolute speed of the carrier.