Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications
    2.
    发明授权
    Plasmonic transparent conducting metal oxide nanoparticles and films for optical sensing applications 有权
    等离子体透明导电金属氧化物纳米颗粒和用于光学传感应用的膜

    公开(公告)号:US08638440B1

    公开(公告)日:2014-01-28

    申请号:US13927223

    申请日:2013-06-26

    IPC分类号: G01N21/00 G01N21/55

    CPC分类号: G01N21/783 G01N2201/0826

    摘要: The disclosure relates to a method of detecting a change in a chemical composition by contacting a doped oxide material with a monitored stream, illuminating the doped oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The doped metal oxide has a carrier concentration of at least 1018/cm3, a bandgap of at least 2 eV, and an electronic conductivity of at least 101 S/cm, where parameters are specified at a temperature of 25° C. The optical response of the doped oxide materials results from the high carrier concentration of the doped metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration. These changes in effective carrier densities of conducting metal oxide nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary doped metal oxides include but are not limited to Al-doped ZnO, Sn-doped In2O3, Nb-doped TiO2, and F-doped SnO2.

    摘要翻译: 本公开涉及通过使掺杂的氧化物材料与监测的流接触来检测化学组成的变化的方法,用入射光照射掺杂的氧化物材料,收集离开的光,基于入射光的比较监测光学信号 和出射光,并检测光信号的偏移。 掺杂的金属氧化物具有至少1018 / cm3的载流子浓度,至少2eV的带隙和至少101S / cm的电子导电率,其中在25℃的温度下规定了参数。光学响应 掺杂的氧化物材料由掺杂的金属氧化物的高载流子浓度导致,并且由此改变气体气氛对所述相对高的载流子浓度的影响。 假设导电金属氧化物纳米颗粒的有效载流子密度的这些变化是造成与自由载体相关的测量的光吸收的变化的原因。 示例性的掺杂金属氧化物包括但不限于掺杂Al的ZnO,掺杂Sn的In 2 O 3,掺杂Nb的TiO 2和F掺杂的SnO 2。

    Nanocomposite thin films for high temperature optical gas sensing of hydrogen
    4.
    发明授权
    Nanocomposite thin films for high temperature optical gas sensing of hydrogen 有权
    用于氢气高温光学气体传感的纳米复合薄膜

    公开(公告)号:US08411275B1

    公开(公告)日:2013-04-02

    申请号:US13443223

    申请日:2012-04-10

    IPC分类号: G01N21/00 G01N21/55

    CPC分类号: G01N21/554

    摘要: The disclosure relates to a plasmon resonance-based method for H2 sensing in a gas stream at temperatures greater than about 500° C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10−7 S/cm at a temperature of 700° C. Exemplary inert matrix materials include SiO2, Al2O3, and Si3N4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO2.

    摘要翻译: 本公开涉及一种基于等离子体共振的方法,用于使用氢气感测材料在高于约500℃的温度下在气流中进行H2感测。 氢感测材料由具有小于约100纳米的平均纳米颗粒直径的金纳米颗粒组成,分散在带隙大于或等于5eV的惰性基质中,氧离子传导率小于约10-7S / cm 示例性惰性基质材料包括SiO 2,Al 2 O 3和Si 3 N 4,以及通过组合和/或掺杂这些材料来改变有效折射率的修饰。 在高温下,等离子体共振光吸收峰的蓝移表示H2的存在。 所公开的方法相对于通常使用的主动和可还原的基质材料,例如氧化钇稳定的氧化锆(YSZ)或TiO 2,具有显着的优点。

    Palladium and platinum-based nanoparticle functional sensor layers for selective H2 sensing

    公开(公告)号:US09696256B1

    公开(公告)日:2017-07-04

    申请号:US14887660

    申请日:2015-10-20

    CPC分类号: G01N21/783

    摘要: The disclosure relates to a plasmon resonance-based method for H2 sensing in a gas stream utilizing a hydrogen sensing material. The hydrogen sensing material is comprises Pd-based or Pt-based nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10−7 S/cm at a temperature of 700° C. Exemplary inert matrix materials include SiO2, Al2O3, and Si3N4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. The hydrogen sensing material utilized in the method of this disclosure may be prepared using means known in the art for the production of nanoparticles dispersed within a supporting matrix including sol-gel based wet chemistry techniques, impregnation techniques, implantation techniques, sputtering techniques, and others.

    Nanocomposite thin films for optical temperature sensing
    6.
    发明授权
    Nanocomposite thin films for optical temperature sensing 有权
    用于光学温度感测的纳米复合薄膜

    公开(公告)号:US09568377B1

    公开(公告)日:2017-02-14

    申请号:US14177306

    申请日:2014-02-11

    摘要: The disclosure relates to an optical method for temperature sensing utilizing a temperature sensing material. In an embodiment the gas stream, liquid, or solid has a temperature greater than about 500° C. The temperature sensing material is comprised of metallic nanoparticles dispersed in a dielectric matrix. The metallic nanoparticles have an electronic conductivity greater than approximately 10−1 S/cm at the temperature of the temperature sensing material. The dielectric matrix has an electronic conductivity at least two orders of magnitude less than the dispersed metallic nanoparticles at the temperature of the temperature sensing material. In some embodiments, the chemical composition of a gas stream or liquid is simultaneously monitored by optical signal shifts through multiple or broadband wavelength interrogation approaches. In some embodiments, the dielectric matrix provides additional functionality due to a temperature dependent band-edge, an optimized chemical sensing response, or an optimized refractive index of the temperature sensing material for integration with optical waveguides.

    摘要翻译: 本公开涉及一种利用温度感测材料的温度感测光学方法。 在一个实施方案中,气流,液体或固体具有大于约500℃的温度。温度感测材料由分散在电介质基质中的金属纳米颗粒组成。 金属纳米颗粒在温度感测材料的温度下具有大于约10-1S / cm的电子传导性。 电介质矩阵在温度感测材料的温度下具有比分散的金属纳米颗粒小至少两个数量级的电子传导性。 在一些实施方案中,气流或液体的化学组成通过多个或宽带波长询问方法的光信号移位来同时监测。 在一些实施例中,介电矩阵由于与温度相关的带边缘,优化的化学感测响应或用于与光波导集成的温度感测材料的优化折射率而提供额外的功能。