摘要:
A media isolated pressure sensor is disclosed that helps improve performance and reduce cost. In one illustrative embodiment, a pressure sensor may include a carrier having one or more holes defined therein. The carrier may be coupled to a diaphragm on one side, and a pressure sensing die on the other, with the pressure sensing die in fluid communication with the hole in the carrier. The carrier, diaphragm and pressure sense die may form a transfer fluid cavity, which is filled with a pressure transfer fluid. An input pressure from a media to be sensed may be provided to the diaphragm, which transmits the pressure to the pressure sensing die via the pressure transfer fluid. The pressure sensing die remains isolated from the media to be sensed.
摘要:
Methods and devices for increasing a sensor resolution are disclosed. In one example, a two measurement process is used. A first measurement is used to effectively measure across a full range (e.g. 0 to 5 VDC) of the sensor. This first measurement may identify the current operating point of the sensor (e.g. 3.5 VDC). A second measurement may then be made to effectively measure across a sub-range of the sensor that encompasses the current operating point of the sensor (e.g. across a sub-range of 3.0 to 4.0 VDC for a current operating point of 3.5 VDC). The gain of the amplifier may be raised during the second measurement to produce a higher resolution measurement. In some cases, the first measurement may be used to determine an appropriate offset that may be applied so as to scale the amplifier to the desired sub-range of sensor that includes the current operating point of the sensor. In some cases, the two measurements may be used together to compute an effectively higher resolution measurement signal. In some cases, this may allow for a smaller and/or cheaper sensor to be used, while still achieving good results.
摘要:
Methods and devices for increasing a sensor resolution are disclosed. In one example, a two measurement process is used. A first measurement is used to effectively measure across a full range (e.g. 0 to 5 VDC) of the sensor. This first measurement may identify the current operating point of the sensor (e.g. 3.5 VDC). A second measurement may then be made to effectively measure across a sub-range of the sensor that encompasses the current operating point of the sensor (e.g. across a sub-range of 3.0 to 4.0 VDC for a current operating point of 3.5 VDC). The gain of the amplifier may be raised during the second measurement to produce a higher resolution measurement. In some cases, the first measurement may be used to determine an appropriate offset that may be applied so as to scale the amplifier to the desired sub-range of sensor that includes the current operating point of the sensor. In some cases, the two measurements may be used together to compute an effectively higher resolution measurement signal. In some cases, this may allow for a smaller and/or cheaper sensor to be used, while still achieving good results.
摘要:
An ASIC compensated pressure sensor includes a sense die, an ASIC chip, and supporting elements. The sense die includes a metallized surface for attaching the sense die to a mounting surface. The resulting solder joint provides a hermetic seal that is resistant to a wide range of media associated with different environmental conditions. The mounting surface can contain the ASIC and electronics for compensation or can be attached to another mounting surface, which contains the ASIC and electronics. Either configuration can include collars of different styles for ease of assembly and in turn can be attached to a mating connector. The mounting surface can possess a closely matched coefficient of thermal expansion to the sense die in order to enhance electrical stability of the output signal over a wide temperature and pressure ranges.
摘要:
The present disclosure relates to pressure sensor assemblies and methods. The pressure sensor assembly may include a first substrate, a second substrate and a sense die. The first substrate may be connected to the second substrate, such that an aperture in the first substrate is in fluid communication with an aperture in the second substrate. The second substrate may be connected to the sense die, such that the aperture in the second substrate is in fluid communication with a sense diaphragm on the second substrate. The pressure sensor assembly may include a media path that extends through the aperture in the first substrate, through the aperture in the second substrate, and to the sense die. In some cases, the first substrate, the second substrate and the sense die may be connected in a manner that does not include an adhesive.
摘要:
An ASIC compensated pressure sensor includes a sense die, an ASIC chip, and supporting elements. The sense die includes a metallized surface for attaching the sense die to a mounting surface. The resulting solder joint provides a hermetic seal that is resistant to a wide range of media associated with different environmental conditions. The mounting surface can contain the ASIC and electronics for compensation or can be attached to another mounting surface, which contains the ASIC and electronics. Either configuration can include collars of different styles for ease of assembly and in turn can be attached to a mating connector. The mounting surface can possess a closely matched coefficient of thermal expansion to the sense die in order to enhance electrical stability of the output signal over a wide temperature and pressure ranges.
摘要:
The apparatus includes a housing; a plurality of sensors mounted on the housing, each of the sensors including a sensing element and an electrical output connected to said sensing element. The apparatus also includes a plurality of inputs connected to the sensors, respectively, to transmit to the sensors. A circuit is mounted in the housing and in electrical connection with the electrical outputs to provide a common signal conditioner for the sensors.
摘要:
The present disclosure relates to sensors that are exposed to media during use. In some cases, a sensor assembly includes a sensor element positioned on a substrate, where the sensor element may be mechanically and electrically connected to the substrate and may be in fluid communication with a media inlet port. The sensor assembly may include a cover sealed to the substrate of the sensor assembly to enclose the sensor element in a sealed chamber. In some instances, the sensor assembly may include a bonding layer on the substrate of the sensor assembly, and the cover may be sealed to the bonding layer to form the sealed chamber. In some instances, the sealed chamber may help provide a fail-safe media seal for the sensor assembly in the event the sensor element forms a leak during use.
摘要:
The present disclosure relates to sensors including pressure sensors, humidity sensors, flow sensors, etc. In some cases, a connector assembly for a sensor assembly may include an electrical connector, a printed circuit board and a conductive outer housing. The electrical connector may include a mechanical connector and electrical terminals exposed at a first end and at a second end of the mechanical connector. The electrical connector, printed circuit board and conductive outer housing may all be electrically connected to one another. In some instances, a plurality of electrical connectors having different mechanically shaped second ends and similarly shaped first ends may be provided, from which one electrical connector may be chosen for use in the connector assembly.
摘要:
Method and system for a wet/wet differential pressure sensor based on microelectronic packaging process. A top cap with a hole can be attached to a topside of a MEMS-configured pressure sense die with a pressure sensing diaphragm in order to allow sensed media to come in contact with the topside of the pressure sensing diaphragm. An optional constraint with a hole for stress relief can be attached to a backside of the pressure sense die. Adhesive and/or elastomeric seals and/or solder can be utilized to seal the pressure sense die allowing sensed media to come in contact with both sides of the pressure sensing diaphragm without coming into contact with wirebonds and other metallized surfaces. The MEMS-configured pressure sense die can also be bonded to a substrate with standard die attach materials. Such microelectronic packaging processes yield a high performance and cost effective solution thereby providing wet-wet pressure sensing capability.