Abstract:
A method for fabricating a floating gate memory device comprises using a buried diffusion oxide that is below the floating gate thereby producing an increased step height between the floating gate and the buried diffusion oxide. The increased step height can produce a higher GCR, while still allowing decreased cell size using a virtual ground array design.
Abstract:
A method for fabricating a floating gate memory device comprises using a buried diffusion oxide that is below the floating gate thereby producing an increased step height between the floating gate and the buried diffusion oxide. The increased step height can produce a higher GCR, while still allowing decreased cell size using a virtual ground array design.
Abstract:
A method for fabricating a floating gate memory device comprises using a buried diffusion oxide that is below the floating gate thereby producing an increased step height between the floating gate and the buried diffusion oxide. The increased step height can produce a higher GCR, while still allowing decreased cell size using a virtual ground array design.
Abstract:
A method for fabricating a floating gate memory device comprises using a buried diffusion oxide that is below the floating gate thereby producing an increased step height between the floating gate and the buried diffusion oxide. The increased step height can produce a higher GCR, while still allowing decreased cell size using a virtual ground array design.
Abstract:
A system for dynamically controlling attendance of a group of employees includes a corporation website (12), an application server (13), a database (15), and a number of client computers (10). The application server includes an attendance management module (131) for performing operations of recording an arrival time, a departure time and a work place of each employee, calculating actual work hours according to the arrival time and departure time, comparing the actual work hours to normal work hours specified in corresponding attendance requirements, and processing abnormal attendance statuses. A related method for dynamically controlling attendance of a group of employees is also disclosed.
Abstract:
A BLT can include a different channel length, channel width, or both to compensate for bit line loading effects. The channel length and/or channel width of the transistor structure can be configured so as to achieve a desired loading. Thus, the bit line transistor structure can improve global metal bit line loading uniformity and provide greater uniformity in bit line bias. Additionally, the greater uniformity in bit line bias can improve reliability.