摘要:
There exists a need in the art for high throughput screening assays that can identify compounds that specifically modulate the activity of fast-acting ion channels, such as TRPM5. Current methods suffer from a lack of sensitivity, low throughput, and are labor intensive. The claimed methods provide fluorescent assays with an optical readout that gives rapid readout of the results, has a high signal to noise background ratio, are easy to use, can be modified for automation and miniaturization, and provide verification that a compound specifically modulates TRPM5.
摘要:
The present invention embraces a method for high-throughput gene profiling with high specificity and sensitivity. With this system, >1000 mRNA species can be co-amplified using gene-specific primers from a single cell. The primers are designed to amplify sequences of desirable length, which are in different exons. The exons can be either adjacent and separated by a large intron or include more than two exons. The amplified sequences are then analyzed by microarray with probes hybridizing to neighboring exons.
摘要:
The invention relates an assay useful for screening and identifying compounds as modulators of lower alkyl phenol activation of TRPA1. Thymol, a lower alkyl phenol anti-infective and the active ingredient in, e.g., mouthwashes, is stringent and has an objectionable burning taste sensation. Thymol activates the transient receptor potential like ion channel TRPA1. The assay described and claimed herein involves measurement of activation of TRPA1 and enables the screening of compounds that inhibit lower alkyl phenol, or thymol activation of TRPA1. Inhibitors of thymol activation of TRPA1 can be used to prevent the objectionable taste of thymol in medical uses where taste limits acceptance.
摘要:
The invention relates an assay useful for screening and identifying compounds as modulators of lower alkyl phenol activation of TRPA1. Thymol, a lower alkyl phenol anti-infective and the active ingredient in, e.g., mouthwashes, is stringent and has an objectionable burning taste sensation. Thymol activates the transient receptor potential like ion channel TRPA1. The assay described and claimed herein involves measurement of activation of TRPA1 and enables the screening of compounds that inhibit lower alkyl phenol, or thymol activation of TRPA1. Inhibitors of thymol activation of TRPA1 can be used to prevent the objectionable taste of thymol in medical uses where taste limits acceptance.
摘要:
There exists a need in the art for high throughput screening assays that can identify compounds that specifically modulate the activity of fast-acting ion channels, such as TRPM5. Current methods suffer from a lack of sensitivity, low throughput, and are labor intensive. The claimed methods provide fluorescent assays with an optical readout that gives rapid readout of the results, has a high signal to noise background ratio, are easy to use, can be modified for automation and miniaturization, and provide verification that a compound specifically modulates TRPM5.
摘要:
There exists a need in the art for high throughput screening assays that can identify compounds that specifically modulate the activity of fast-acting ion channels, such as TRPM5. Current methods suffer from a lack of sensitivity, low throughput, and are labor intensive. The claimed methods provide fluorescent assays with an optical readout that gives rapid readout of the results, has a high signal to noise background ratio, are easy to use, can be modified for automation and miniaturization, and provide verification that a compound specifically modulates TRPM5.
摘要:
The invention relates an assay useful for screening and identifying compounds as modulators of lower alkyl phenol activation of TRPA1. Thymol, a lower alkyl phenol anti-infective and the active ingredient in, e.g., mouthwashes, is stringent and has an objectionable burning taste sensation. Thymol activates the transient receptor potential like ion channel TRPA1. The assay described and claimed herein involves measurement of activation of TRPA1 and enables the screening of compounds that inhibit lower alkyl phenol, or thymol activation of TRPA1. Inhibitors of thymol activation of TRPA1 can be used to prevent the objectionable taste of thymol in medical uses where taste limits acceptance.