Abstract:
A directional lamp comprises a light source, a beam forming optical system configured to form light from the light source into a light beam, and a light mixing diffuser arranged to diffuse the light beam. The light source, beam forming optical system, and light mixing diffuser are secured together as a unitary lamp. The beam forming optical system includes: a collecting reflector having an entrance aperture receiving light from the light source and an exit aperture that is larger than the entrance aperture, and a lens disposed at the exit aperture of the collecting reflector, the light source being positioned along an optical axis of the beam forming optical system at a distance from the lens that is within plus or minus ten percent of a focal length of the lens.
Abstract:
A directional lamp comprises a light source, a beam forming optical system configured to form light from the light source into a light beam, and a light mixing diffuser arranged to diffuse the light beam. The light source, beam forming optical system, and light mixing diffuser are secured together as a unitary lamp. The beam forming optical system includes: a collecting reflector having an entrance aperture receiving light from the light source and an exit aperture that is larger than the entrance aperture, and a lens disposed at the exit aperture of the collecting reflector, the light source being positioned along an optical axis of the beam forming optical system at a distance from the lens that is within plus or minus ten percent of a focal length of the lens.
Abstract:
A lens for a flashlight or other lighting unit provides for focusing light from a source, such as an LED, to provide a light beam adjustable between a spot beam and a wide beam. The lens includes a lens body with a front face, a rear LED-receiving well, and a side surface extending between the front face and the rear well. The front face includes a central surface surrounded by an annular concave surface. The rear well includes a space for the LED to be adjusted in position. The rear well space is defined by a concavely-curved sidewall and a concavely-curved base. The concave curvature of the sidewall and base may be Bezier curves.
Abstract:
An optical system includes an energy source and a reflector partially surrounding the energy source to reflect energy produced by the energy source. Preferably, the reflector is formed by segments of second order surfaces or segments approximating second order surfaces. The segments are each sized and shaped to provide a predetermined amount of energy in a predetermined energy pattern on a target surface. Additionally, the reflector is preferably a flexible reflector that can be selectively deformed from a first shape to a second shape to provide different first and second predetermined energy patterns.
Abstract:
A directional lamp comprises a light source, a beam forming optical system configured to form light from the light source into a light beam, and a light mixing diffuser arranged to diffuse the light beam. The light source, beam forming optical system, and light mixing diffuser are secured together as a unitary lamp. The beam forming optical system includes: a collecting reflector having an entrance aperture receiving light from the light source and an exit aperture that is larger than the entrance aperture, and a lens disposed at the exit aperture of the collecting reflector, the light source being positioned along an optical axis of the beam forming optical system at a distance from the lens that is within plus or minus ten percent of a focal length of the lens.
Abstract:
A directional lamp comprises a light source, a beam forming optical system configured to form light from the light source into a light beam, and a light mixing diffuser arranged to diffuse the light beam. The light source, beam forming optical system, and light mixing diffuser are secured together as a unitary lamp. The beam forming optical system includes: a collecting reflector having an entrance aperture receiving light from the light source and an exit aperture that is larger than the entrance aperture, and a lens disposed at the exit aperture of the collecting reflector, the light source being positioned along an optical axis of the beam forming optical system at a distance from the lens that is within plus or minus ten percent of a focal length of the lens.
Abstract:
A lens for a flashlight or other lighting unit provides for focusing light from a source, such as an LED, to provide a light beam adjustable between a spot beam and a wide beam. The lens includes a lens body with a front face, a rear LED-receiving well, and a side surface extending between the front face and the rear well. The front face includes a central surface surrounded by an annular concave surface. The rear well includes a space for the LED to be adjusted in position. The rear well space is defined by a concavely-curved sidewall and a concavely-curved base. The concave curvature of the sidewall and base may be Bezier curves.
Abstract:
A portable testing device for comparing one reflective part with another to determine whether the reflective part has met quality standards is presented. The portable reflex comparator includes a light source for directing a beam of light to a lock-in amplifier and to a collimating lens. The collimating lens directs light to a reflex part to be tested, for example, one being manufactured by an injection molding machine to be used as an automotive lens. A light beam is reflected back out of the reflective part, through the collimating lens where it converges to the focal plane where it is processed by the amplifier. A voltmeter produces a reading for the operator to see whether the production part meets a certain standardized value.