NANOCOMPOSITES OF POLYMERS WITH DISPERSED NANOTUBES
    2.
    发明申请
    NANOCOMPOSITES OF POLYMERS WITH DISPERSED NANOTUBES 有权
    聚合物与分散纳米粒子的纳米复合物

    公开(公告)号:US20100090175A1

    公开(公告)日:2010-04-15

    申请号:US12577801

    申请日:2009-10-13

    IPC分类号: H01B1/24

    摘要: The present invention provides polymer nanocomposites with dispersed nanotubes and methods of making same. The polymer may be a polyether. For example, the present invention provides an effective method to successfully disperse single walled nanotubes (SWNTs) into both Polyethylenoxide (PEO) and its low molecular weight analog polyethylene glycol (PEG) with hydrodynamic percolation at about 0.09 wt % and an electrical percolation at about 0.03 wt % SWNTs at room temperature, and the resulting nanocomposites. The method may include providing a surfactant. Most notably the present inventors achieved a decrease in the melting point of the polymer and a retardation of polymer crystallization due to the presence of the nanotubes.

    摘要翻译: 本发明提供了具有分散纳米管的聚合物纳米复合材料及其制备方法。 聚合物可以是聚醚。 例如,本发明提供了一种将单壁纳米管(SWNT)成功地分散在聚乙烯氧化物(PEO)及其低分子量模拟聚乙二醇(PEG)中的流体动力学渗滤约0.09wt%和约在约0.1wt%的电渗透的有效方法 0.03wt%的SWNTs和所得的纳米复合材料。 该方法可以包括提供表面活性剂。 最值得注意的是本发明人由于纳米管的存在而实现了聚合物的熔点降低和聚合物结晶的延迟。

    Organoclay-polyurea nanocomposites
    3.
    发明授权
    Organoclay-polyurea nanocomposites 有权
    有机粘土 - 聚脲纳米复合材料

    公开(公告)号:US08907000B2

    公开(公告)日:2014-12-09

    申请号:US12896074

    申请日:2010-10-01

    IPC分类号: C08K3/34 B82Y30/00

    CPC分类号: B82Y30/00 C08K3/346 C08L75/02

    摘要: A nanocomposite having a nanomaterial dispersed into a polymer matrix, in one embodiment exfoliated nanoclay dispersed in a polyurea matrix. A method of making PU-nanocomposites for coatings for improved mechanical properties, in one embodiment the method comprises obtaining and treating a nanomaterial, dispersing the nanomaterial into a pre-polymer matrix, mixing the pre-polymer matrix under heating to form a coating; and depositing the coating on a substrate.

    摘要翻译: 一种纳米复合材料,其具有分散在聚合物基质中的纳米材料,在一个实施方案中,分散在聚脲基质中的剥离的纳米粘土。 一种制备用于涂层的PU-纳米复合材料以改善机械性能的方法,在一个实施方案中,该方法包括获得和处理纳米材料,将纳米材料分散到预聚物基质中,在加热下混合预聚物基质以形成涂层; 并将涂层沉积在基底上。

    Nanocomposites of polymers with dispersed nanotubes
    5.
    发明授权
    Nanocomposites of polymers with dispersed nanotubes 有权
    具有分散纳米管的聚合物的纳米复合材料

    公开(公告)号:US07893148B2

    公开(公告)日:2011-02-22

    申请号:US12064660

    申请日:2006-08-24

    摘要: The present invention provides polymer nanocomposites with dispersed nanotubes and methods of making same. The polymer may be a polyether. For example, the present invention provides an effective method to successfully disperse single walled nanotubes (SWNTs) into both Polyethylenoxide (PEO) and its low molecular weight analog polyethylene glycol (PEG) with hydrodynamic percolation at about 0.09 wt % and an electrical percolation at about 0.03 wt % SWNTs at room temperature, and the resulting nanocomposites. The method may include providing a surfactant. Most notably the present inventors achieved a decrease in the melting point of the polymer and a retardation of polymer crystallization due to the presence of the nanotubes.

    摘要翻译: 本发明提供了具有分散纳米管的聚合物纳米复合材料及其制备方法。 聚合物可以是聚醚。 例如,本发明提供了一种将单壁纳米管(SWNT)成功地分散在聚乙烯氧化物(PEO)及其低分子量模拟聚乙二醇(PEG)中的流体动力学渗透约0.09wt%和约渗透电渗析的有效方法 0.03wt%的SWNTs和所得的纳米复合材料。 该方法可以包括提供表面活性剂。 最值得注意的是本发明人由于纳米管的存在而实现了聚合物的熔点降低和聚合物结晶的延迟。

    Butyl nanocomposite via low Mw elastomer pre-blend
    6.
    发明授权
    Butyl nanocomposite via low Mw elastomer pre-blend 有权
    丁基纳米复合材料通过低Mw弹性体预混合

    公开(公告)号:US07638573B2

    公开(公告)日:2009-12-29

    申请号:US11400662

    申请日:2006-04-07

    IPC分类号: C08K9/00 C08K9/04

    摘要: The present invention provides a method to form a nanocomposite including blending a high molecular weight elastomer, a low molecular weight elastomer, and a clay to form a nanocomposite; wherein the high molecular weight elastomer has a weight average molecular weight greater than 250000; wherein the low molecular weight elastomer has a weight average molecular weight less than 150000. In another embodiment, the invention provides a method to form a nanocomposite including the steps of blending a low molecular weight elastomer and a clay to form a first mixture; blending a high molecular weight elastomer and the first mixture to form the nanocomposite; wherein the low molecular weight elastomer has a weight average molecular weight less than 150000; and, wherein the high molecular weight elastomer has a weight average molecular weight greater than 250000.

    摘要翻译: 本发明提供一种形成纳米复合材料的方法,包括混合高分子量弹性体,低分子量弹性体和粘土以形成纳米复合材料; 其中所述高分子量弹性体的重均分子量大于250000; 其中低分子弹性体的重均分子量小于150000.在另一个实施方案中,本发明提供形成纳米复合材料的方法,包括以下步骤:混合低分子量弹性体和粘土以形成第一混合物; 混合高分子量弹性体和第一混合物以形成纳米复合材料; 其中所述低分子量弹性体的重均分子量小于150000; 其中高分子量弹性体的重均分子量大于250000。

    Butyl nanocomposite via low Mw elastomer pre-blend
    8.
    发明申请
    Butyl nanocomposite via low Mw elastomer pre-blend 有权
    丁基纳米复合材料通过低Mw弹性体预混合

    公开(公告)号:US20070238822A1

    公开(公告)日:2007-10-11

    申请号:US11400662

    申请日:2006-04-07

    IPC分类号: C08K9/00 C08K9/04

    摘要: The present invention provides a method to form a nanocomposite including blending a high molecular weight elastomer, a low molecular weight elastomer, and a clay to form a nanocomposite; wherein the high molecular weight elastomer has a weight average molecular weight greater than 250000; wherein the low molecular weight elastomer has a weight average molecular weight less than 150000. In another embodiment, the invention provides a method to form a nanocomposite including the steps of blending a low molecular weight elastomer and a clay to form a first mixture; blending a high molecular weight elastomer and the first mixture to form the nanocomposite; wherein the low molecular weight elastomer has a weight average molecular weight less than 150000; and, wherein the high molecular weight elastomer has a weight average molecular weight greater than 250000.

    摘要翻译: 本发明提供一种形成纳米复合材料的方法,包括混合高分子量弹性体,低分子量弹性体和粘土以形成纳米复合材料; 其中所述高分子量弹性体的重均分子量大于250000; 其中低分子量弹性体的重均分子量小于150000.在另一个实施方案中,本发明提供形成纳米复合材料的方法,包括以下步骤:混合低分子量弹性体和粘土以形成第一混合物; 混合高分子量弹性体和第一混合物以形成纳米复合材料; 其中所述低分子量弹性体的重均分子量小于150000; 其中高分子量弹性体的重均分子量大于250000。