Abstract:
The porous displacement piles comprising (a) closed-ended pipe piles with small holes and or narrow slots, filled with compacted sandy soil, (b) closed-ended porous pipe piles such as closed-ended pipe pile with very small holes and or very narrow slots, and (c) a precast prestressed porous concrete piles are driven through inside the already driven non-displacement hollow pipe piles in a grid pattern to create excess pore-water pressures generally ranging between 50 and 1500 kPa in cohesive soils, which begin dissipating through inside the porous displacement piles to rapidly consolidate and densify the said cohesive soil. The porous displacement piles are designed for permitting free flow of the pressurized pore-water and to prevent migration of particles of cohesive soil into the porous displacement pile using filter design criteria or verified by laboratory tests. These piles when driven in sandy soils densify sandy soils instantaneously.
Abstract:
The expandable jacket consists of the rubber membrane surrounding the cylindrical specimen, circular segmental metal plates surrounding the rubber membrane, and elastomeric rubber bands or rings around the segmental plates to permit uniform radial expansion and maintain uniform diameter of the specimen during the test and thereby providing accurate values of deviator stress, volume change characteristics and shear strength of soil specimen. To determine the three-dimensional coefficient of consolidation and coefficient of consolidation in horizontal direction, the flexible ring consists of all above structural components of expandable jacket except that a filter fabric or paper is wrapped around the cylindrical specimen, and then rubber membrane is mounted surrounding the filter paper or paper. The calibration device for calibration of the expandable jacket and flexible ring shall provide the magnitude of correction to be made in deviator stress and lateral resistance provided by the rubber bands or rings during the test.
Abstract:
A test device has been invented for determining three-dimensional consolidation properties of soils, using a flexible ring permitting displacements and dissipation of the excess pore pressures in both horizontal and vertical directions, and affording determination of coefficients of consolidation in the horizontal and vertical directions, and the modulus of elasticity. The flexible ring consists of a filter fabric around the soil specimen, a rubber membrane around the filter, circular shaped segmented metal plates around the membrane and rubber bands or rings around the plates. Both the incremental loading or triaxial type loading systems can be used with this device. A calibration device for calibration of the flexible ring is used to determine the modulus of elasticity of elastic elements, required for calculating lateral resistance provided by the flexible ring during the test.
Abstract:
Standard test methods using a fixed ring for determining one-dimensional consolidation properties of soils represent a subsurface condition where settlement and dissipation of excess pore pressure is possible only in vertical direction. This subsurface condition never occurs, as settlements and dissipation of excess pore pressures always occur in horizontal and vertical directions. Dr. Ramesh Gupta has invented a test device for determining three-dimensional consolidation properties of soils, using a flexible ring permitting displacements and dissipation of excess pore pressures in both horizontal and vertical directions, and affording determination of coefficients of consolidation in horizontal and vertical directions including three-dimensional coefficient of consolidation, and modulus of elasticity. The test device consists of a flexible ring consisting of filter fabric around the soil specimen, rubber membrane around the filter, circular segmented metal plates around the membrane and rubber bands or rings around the plates. Both incremental or triaxial type loading can be used with this device.
Abstract:
During triaxial compression test, a soil specimen experiences reduction of its height with increase in its diameter. New cross-sectional area is calculated assuming uniform increase in diameter. This condition is seldom met in actual soil specimens, because specimen undergoes non-uniform increase in diameter and very often with localized bulging in specimen affecting the accuracy of calculation of deviator stress, shears strength and volume change characteristics. The expandable jacket included in this invention consists of circular segmental metal plates wrapped around the soil specimen and elastomeric rubber bands or rings around the segmental plates to permit uniform radial expansion and maintain uniform diameter of the specimen during the test and thereby providing accurate values of deviator stress, volume change characteristics and shear strength of soil specimen. The calibration device for calibration of expandable jacket shall provide the magnitude of correction to be made in deviator stress.
Abstract:
During triaxial compression test, a soil specimen experiences reduction of its height with simultaneous increase in its diameter. For calculation of new cross-sectional area, it is always assumed that the specimen deforms as a cylinder with uniform increase in diameter through its height. This condition is seldom or never met in actual soil specimens, because specimen undergoes non-uniform increase in diameter through its height and very often with localized bulging in specimen affecting the accuracy of calculation of magnitude of deviator stress at any instant of time during the test. Non-uniform increase in diameter through its height with often localized bulging affects the real strength and volume change characteristics, and how much this effect of non-uniform lateral increase in diameter changes these properties remains unknown. The expandable jacket wrapped around the soil specimen for performing the triaxial compression test included in this invention, shall maintain uniform diameter of soil specimen through its height and shall provide accurate prediction of deviator stress, volume change characteristics and strength of soil specimen. The calibration device for calibration of expandable jacket shall provide the magnitude of correction to be made in deviator stress at various levels of axial and lateral strains.
Abstract:
Expandable Jacket surrounding a pressuremeter probe prevents barrel shape to form and maintains cylindrical shape with uniform radial displacement throughout its height, removing shortcomings of the existing pressuremeters. For the pressuremeter probe to determine horizontal stress versus plane strain relationship in soils and intermediate geomaterials, an expandable comprises of one layer of circular arch shaped segmented plates surrounded by flexible bands or rings. The expandable jacket surrounds a membrane which itself surrounds a porous tube with holes. Borehole less than the diameter of probe is drilled either by pre-boring or self-boring and then pushing the probe with cutter ring. For the pressuremeter probe to determine horizontal stress versus plane lateral strain relationship for rocks, the expandable jacket comprises of two layers of the circular arch shaped segmented plates surrounded by flexible bands or rings and first layer surrounding a plurality of pistons, and second layer surrounding the first layer.
Abstract:
The expandable jacket and flexible ring comprises of the segmented circular arch shaped plates and bands or rings around the segmented plates. The test preparation consists of a membrane surrounding a specimen with or without a filter, segmented plates surrounding the membrane, and bands or rings around the segmented plates to permit uniform radial expansion of the specimen through its height when increments of vertical load are applied during the test, thereby providing accurate values of area of cross-section, deviator stress, volume change, modulus of elasticity, Poisson's ratio and shear strength. Using the flexible ring, three-dimensional consolidation tests are performed to determine three-dimensional coefficient of consolidation and coefficients of consolidation in horizontal and vertical directions. Removable attachments are used for assembling the expandable jacket and flexible ring during the test. A calibration device is used to determine the modulus of elasticity of the membrane and expandable jacket and flexible ring.
Abstract:
The present invention relates to new compounds of the formula [Chemical formula should be inserted here. Please see paper copy] wherein R1, R2, R3, and R31 are as specified herein. The invention also relates to a method for preparation thereof, as well as combinations of the new compounds with previously known agents. The invention also relates to the use of the above-mentioned compounds and combinations for the preparation of a medicament for treating hypertension of different kinds, alleviating organ damage of different kinds, treating or preventing diabetic nephropathy, treating endothelin and angiotensin mediated disorders, and treating prostate cancer.
Abstract:
The present invention encompasses; the novel substituted heterocyclic compounds represented by formula (I) or their pharmaceutically acceptable salts, wherein the substituents in formula (I) have the meanings as defined in the specification. The invention also encompasses process for preparing such compound, pharmaceutical compositions and methods of treating or preventing PTP-1B mediated diseases.