Abstract:
A reductant delivery unit (10) is provided for selective catalytic reduction (SCR) after-treatment for vehicles. The unit includes a solenoid fluid injector (10) constructed and arranged to be associated with an exhaust gas flow path (14) upstream of a SCR catalytic converter (17). The fluid injector has a fluid inlet (13) and a fluid outlet (15) with the fluid inlet being constructed and arranged to receive a source of urea solution and the fluid outlet being constructed and arranged to communicate directly with the exhaust flow path so as to control injection of urea solution into the exhaust gas flow path. An interface (24) is constructed and arranged to couple the fluid injector to the gas flow path. The interface defines a thermal barrier constructed and arranged to decoupled a body of the injector from exposure to heat in the exhaust gas flow path.
Abstract:
A fluid quality sensor (20) includes a first electrode (24) that has a fluid passageway (22) that is adapted to be placed in line with at least one fluid conduit (30). A housing (40) is supported on the first electrode (24) in one example by overmolding a portion (48) of the housing onto a portion of the first electrode (24). A second electrode (50) is supported within the fluid passageway (22) and electrically isolated from the first electrode (24). The first electrode (24) and the second electrode (50) operate as a capacitor for making fluid quality determinations.
Abstract:
A fluid sensor arrangement (20) includes a sleeve (32) that is adapted to be placed within a container (24). A plurality of conductors (46, 48) and a channel member (50) within the sleeve cooperate to provide a measurement of conductivity of the fluid within the sleeve (32). The conductivity measurement provides an indication of a level of fluid within the container (24). A disclosed example includes a non-conductive channel member (50) having an opening or a channel (52) for directing selected portions of a conductivity field within the sleeve (32) between the conductors (46, 48) for making the conductivity determinations.
Abstract:
A sensor device (10) for making at least one determination regarding a selected characteristic of a fluid includes a support post (32) that is adapted to be exposed to the fluid. A capacitor has electrodes (66, 68) that are supported near one end of the support post (32). A housing (40) for containing electronics (120) is supported near an opposite end of the support post (32). In a disclosed arrangement, a level sensing element such as a conductive polymer rod is at least partially supported by the support post (32). A disclosed assembly procedure includes overmolding portions of the device onto other portions to provide stable and secure connections between the various portions of the assembly.
Abstract:
A reductant delivery unit (10) is provided for selective catalytic reduction (SCR) after-treatment for vehicles. The unit includes a solenoid fluid injector (10) constructed and arranged to be associated with an exhaust gas flow path (14) upstream of a SCR catalytic converter (17). The fluid injector has a fluid inlet (13) and a fluid outlet (15) with the fluid inlet being constructed and arranged to receive a source of urea solution and the fluid outlet being constructed and arranged to communicate directly with the exhaust flow path so as to control injection of urea solution into the exhaust gas flow path. An interface (24) is constructed and arranged to couple the fluid injector to the gas flow path. The interface defines a thermal barrier constructed and arranged to decoupled a body of the injector from exposure to heat in the exhaust gas flow path.
Abstract:
A fluid sensor arrangement (20) includes a sleeve (32) that is adapted to be placed within a container (24). A plurality of conductors (46, 48) and a channel member (50) within the sleeve cooperate to provide a measurement of conductivity of the fluid within the sleeve (32). The conductivity measurement provides an indication of a level of fluid within the container (24). A disclosed example includes a non-conductive channel member (50) having an opening or a channel (52) for directing selected portions of a conductivity field within the sleeve (32) between the conductors (46, 48) for making the conductivity determinations.
Abstract:
A sensor device (10) for making at least one determination regarding a selected characteristic of a fluid includes a support post (32) that is adapted to be exposed to the fluid. A capacitor has electrodes (66, 68) that are supported near one end of the support post (32). A housing (40) for containing electronics (120) is supported near an opposite end of the support post (32). In a disclosed arrangement, a level sensing element such as a conductive polymer rod is at least partially supported by the support post (32). A disclosed assembly procedure includes overmolding portions of the device onto other portions to provide stable and secure connections between the various portions of the assembly.
Abstract:
A method and fuel injector for precision setting of valve lift, using a valve body shell (42) telescoped over the valve body (60), the shell (42) having a nonmagnetic extension welded to the valve body shell (42) and to the end of an inlet tube (16) providing a solenoid pole piece, with the valve body (60) and shell (42) adjusted to set the valve lift and thereafter welded together. Interference fit portions stabilize the adjusted position of the members preparatory to welding, and displaced material in a locking groove (102) creates a mechanical interlock between the valve body (60) and shell (42) to stabilize the members in their adjusted positions after welding so that the set lift is minimally affected by weld shrinkage. An external radial groove 18 allows radial bending as the weld cools to minimize axial shift of the parts and thus the effect on the set valve lift.