摘要:
The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems.
摘要:
A method of an embodiment comprises forming a dielectric layer on a first side of an image sensor substrate, and exposing the dielectric layer to ultraviolet (UV) radiation. The image sensor substrate comprises a photo diode. A structure of an embodiment comprises a substrate and a charge-less dielectric. The substrate comprises a photo diode. The charge-less dielectric layer is on a first side of the substrate, and a total charge of the charge-less dielectric results in an average voltage drop of less than 0.2 V across the charge-less dielectric layer.
摘要:
A wafer cleaning system includes a platform, a plurality of wafer holding units over the platform, a front-end rinse nozzle, and a back-end purge unit. The plurality of wafer holding units is set to define a reference plane of wafer holding. The front-end rinse nozzle is above the reference plane and configured to dispense a first rinse fluid toward the reference plane. The back-end purge unit is below the reference plane and configured to dispense an electrolytic gas
摘要:
A method of an embodiment comprises forming a dielectric layer on a first side of an image sensor substrate, and exposing the dielectric layer to ultraviolet (UV) radiation. The image sensor substrate comprises a photo diode. A structure of an embodiment comprises a substrate and a charge-less dielectric. The substrate comprises a photo diode. The charge-less dielectric layer is on a first side of the substrate, and a total charge of the charge-less dielectric results in an average voltage drop of less than 0.2 V across the charge-less dielectric layer.
摘要:
A method of forming an interconnect structure includes providing a dielectric layer; forming a metal line in the dielectric layer; and forming a composite etch stop layer (ESL), which includes forming a lower ESL over the metal line and the dielectric layer; and forming an upper ESL over the lower ESL. The upper ESL and the lower ESL have different compositions. The step of forming the lower ESL and the step of forming the upper ESL are in-situ performed.
摘要:
The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems.
摘要:
A device includes a semiconductor substrate having a front side and a backside, a photo-sensitive device disposed on the front side of the semiconductor substrate, and a first and a second grid line parallel to each other. The first and the second grid lines are on the backside of, and overlying, the semiconductor substrate. The device further includes an adhesion layer, a metal oxide layer over the adhesion layer, and a high-refractive index layer over the metal layer. The adhesion layer, the metal oxide layer, and the high-refractive index layer are substantially conformal, and extend on top surfaces and sidewalls of the first and the second grid lines.
摘要:
The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.
摘要:
A method of forming an interconnect structure includes providing a dielectric layer; forming a metal line in the dielectric layer; and forming a composite etch stop layer (ESL), which includes forming a lower ESL over the metal line and the dielectric layer; and forming an upper ESL over the lower ESL. The upper ESL and the lower ESL have different compositions. The step of forming the lower ESL and the step of forming the upper ESL are in-situ performed.
摘要:
The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.