Abstract:
A PV assembly including framework, PV laminate(s), and a stiffening device. The framework includes a perimeter frame at least 10 feet in length and at least 5 feet in width. The PV laminate(s) are assembled to the perimeter frame to define a receiving zone having a depth of not more than 8 inches. The stiffening device is associated with the framework and is configured to provide a first state and a second state. In the first state, an entirety of the stiffening device is maintained within the receiving zone. In the second state, at least a portion of the stiffening device projects from the receiving zone. The stiffening device enhances a stiffness of the PV assembly in a plane of the perimeter frame, and can include rods defining truss structures.
Abstract:
A torque arm assembly, used with a solar collector mounted to a drive shaft, comprises a torque arm with first and second ends and a torque arm coupling assembly including a drive shaft enclosure defining an open-ended channel sized to house the drive shaft. The channel has a circumferentially extending substantially continuous drive surface between the ends that lies adjacent to the drive shaft so the drive shaft and the drive shaft enclosure rotate together. In some examples contiguous abutment structure, such as weld lines, shims and/or adhesive, connects each side of the drive shaft to the drive shaft enclosure. The invention may also be carried out as a connection improvement method.
Abstract:
A torque arm assembly, used with a solar collector mounted to a drive shaft, comprises a torque arm with first and second ends and a torque arm coupling assembly including a drive shaft enclosure defining an open-ended channel sized to house the drive shaft. The channel has a circumferentially extending substantially continuous drive surface between the ends that lies adjacent to the drive shaft so the drive shaft and the drive shaft enclosure rotate together. In some examples, contiguous abutment structure, such as weld lines, shims and/or adhesive, connects each side of the drive shaft to the drive shaft enclosure. The invention may also be carried out as a connection improvement method.
Abstract:
A PV assembly including framework, PV laminate(s), and a stiffening device. The framework includes a perimeter frame at least 10 feet in length and at least 5 feet in width. The PV laminate(s) are assembled to the perimeter frame to define a receiving zone having a depth of not more than 8 inches. The stiffening device is associated with the framework and is configured to provide a first state and a second state. In the first state, an entirety of the stiffening device is maintained within the receiving zone. In the second state, at least a portion of the stiffening device projects from the receiving zone. The stiffening device enhances a stiffness of the PV assembly in a plane of the perimeter frame, and can include rods defining truss structures.
Abstract:
An incubator for storing micro-plates or micro-tubes comprises a handling robot positioned between shelves or drawers containing micro-titer plates or other containers useful for biological based reactions. The advantages of this configuration are the ultimate compactness of the system and increased speed or reliability achieved with more than one robot being able to access the same plate or tube. Alternative embodiments standardize the spacing and configuration of a robot track and a shelf track such that a shelf and a robot are interchangeable in a track.
Abstract:
A solar collector assembly may include a frame supporting a solar collector and a frame member defining a tilted pivot axis. Support struts may be used to elevate one end of the frame and may be pivoted between an orientation generally parallel to the frame member and to an orientation generally away from the frame. Anchorless, ballast type bases may be used to support the solar collector assembly. Several assemblies may be stacked on top of one another in a storage or transportation configuration using spacers extending between the frames.
Abstract:
A torque arm assembly, used with a solar collector mounted to a drive shaft, comprises a torque arm with first and second ends and a torque arm coupling assembly including a drive shaft enclosure defining an open-ended channel sized to house the drive shaft. The channel has a circumferentially extending substantially continuous drive surface between the ends that lies adjacent to the drive shaft so the drive shaft and the drive shaft enclosure rotate together. In some examples, contiguous abutment structure, such as weld lines, shims and/or adhesive, connects each side of the drive shaft to the drive shaft enclosure. The invention may also be carried out as a connection improvement method.
Abstract:
A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.
Abstract:
A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.
Abstract:
A torque arm assembly, used with a solar collector mounted to a drive shaft, comprises a torque arm with first and second ends and a torque arm coupling assembly including a drive shaft enclosure defining an open-ended channel sized to house the drive shaft. The channel has a circumferentially extending substantially continuous drive surface between the ends that lies adjacent to the drive shaft so the drive shaft and the drive shaft enclosure rotate together. In some examples contiguous abutment structure, such as weld lines, shims and/or adhesive, connects each side of the drive shaft to the drive shaft enclosure. The invention may also be carried out as a connection improvement method.