摘要:
Systems and methods for efficient thread arbitration in a threaded processor with dynamic resource allocation. A processor includes a resource shared by multiple threads. The resource includes an array with multiple entries, each of which may be allocated for use by any thread. Control logic detects a load miss to memory, wherein the miss is associated with a latency greater than a given threshold. The load instruction or an immediately younger instruction is selected for replay for an associated thread. A pipeline flush and replay for the associated thread begins with the selected instruction. Instructions younger than the load instruction are held at a given pipeline stage until the load instruction completes. During replay, this hold prevents resources from being allocated to the associated thread while the load instruction is being serviced.
摘要:
Systems and methods for efficient picking of instructions for out-of-order issue and execution in a processor. In one embodiment, a processor comprises a unified pick queue that is dynamically allocated. Each entry is configured to store age and dependency information relative to other decoded instructions. Also, each entry stores a picked field, which when asserted indicates the decoded instruction has already been picked for out-of-order issue and execution. When asserted, a trigger field indicates a result of a corresponding decoded instruction will be available a predetermined number of clock cycles afterward. A younger instruction dependent on a result of an older instruction is ready to be picked before the result of the older instruction is available. In this case, the older instruction has asserted picked and trigger fields.
摘要:
A processor may include a hardware instruction fetch unit configured to issue instructions for execution, and a hardware functional unit configured to receive instructions for execution, where the instructions include cryptographic instruction(s) and non-cryptographic instruction(s). The functional unit may include a cryptographic execution pipeline configured to execute the cryptographic instructions with a corresponding cryptographic execution latency, and a non-cryptographic execution pipeline configured to execute the non-cryptographic instructions with a corresponding non-cryptographic execution latency that is longer than the cryptographic execution latency. The functional unit may further include a local bypass network configured to bypass results produced by the cryptographic execution pipeline to dependent cryptographic instructions executing within the cryptographic execution pipeline, such that each instruction within a sequence of dependent cryptographic instructions is executable with the cryptographic execution latency, and where the results of the cryptographic execution pipeline are not bypassed to any other functional unit within the processor.
摘要:
Systems and methods for efficient thread arbitration in a processor. A processor comprises a multi-threaded resource. The resource may include an array of entries which may be allocated by threads. A thread arbitration table corresponding to a given thread stores a high and a low threshold value in each table entry. A thread history shift register (HSR) indexes the table, wherein each bit of the HSR indicates whether the given thread is a thread hog. When the given thread has more allocated entries in the array than the high threshold of the table entry, the given thread is stalled from further allocating array entries. Similarly, when the given thread has fewer allocated entries in the array than the low threshold of the selected table entry, the given thread is permitted to allocate entries. In this manner, threads that hog dynamic resources can be mitigated such that more resources are available to other threads that are not thread hogs. This can result in a significant increase in overall processor performance.
摘要:
A system and method for servicing translation lookaside buffer (TLB) misses may manage separate input and output pipelines within a memory management unit. A pending request queue (PRQ) in the input pipeline may include an instruction-related portion storing entries for instruction TLB (ITLB) misses and a data-related portion storing entries for potential or actual data TLB (DTLB) misses. A DTLB PRQ entry may be allocated to each load/store instruction selected from the pick queue. The system may select an ITLB- or DTLB-related entry for servicing dependent on prior PRQ entry selection(s). A corresponding entry may be held in a translation table entry return queue (TTERQ) in the output pipeline until a matching address translation is received from system memory. PRQ and/or TTERQ entries may be deallocated when a corresponding TLB miss is serviced. PRQ and/or TTERQ entries associated with a thread may be deallocated in response to a thread flush.
摘要:
An instruction buffer for a processor configured to execute multiple threads is disclosed. The instruction buffer is configured to receive instructions from a fetch unit and provide instructions to a selection unit. The instruction buffer includes one or more memory arrays comprising a plurality of entries configured to store instructions and/or other information (e.g., program counter addresses). One or more indicators are maintained by the processor and correspond to the plurality of threads. The one or more indicators are usable such that for instructions received by the instruction buffer, one or more of the plurality entries of a memory array can be determined as a write destination for the received instructions, and for instructions to be read from the instruction buffer (and sent to a selection unit), one or more entries can be determined as the correct source location from which to read.
摘要:
In one embodiment, a storage buffer includes a plurality of storage locations configured to store a plurality of incoming instructions. The storage buffer also includes a shift FIFO that is coupled to the plurality of storage locations. The shift FIFO includes an entry configured to store an instruction that is next in a program order. In response to receiving a shift signal, control functionality that is coupled to the plurality of storage locations and to the shift FIFO may cause the instruction that is next in the program order to be moved from a given location of the plurality of storage locations to the entry of the shift FIFO.
摘要:
In one embodiment, a multithreaded processor includes a plurality of buffers, each configured to store instructions corresponding to a respective thread. The multithreaded processor also includes a pick unit coupled to the plurality of buffers. The pick unit may pick from at least one of the buffers in a given cycle, a valid instruction based upon a thread selection algorithm. The pick unit may further cancel, in the given cycle, the picking of the valid instruction in response to receiving a cancel indication.
摘要:
In one embodiment, a multithreaded processor includes a plurality of buffers, each configured to store instructions corresponding to a respective thread. The multithreaded processor also includes a pick unit coupled to the plurality of buffers. The pick unit may pick from at least one of the buffers in a given cycle, a valid instruction based upon a thread selection algorithm. The pick unit may further cancel, in the given cycle, the picking of the valid instruction in response to receiving a cancel indication.
摘要:
Systems and methods for identification of dependent instructions on speculative load operations in a processor. A processor allocates entries of a unified pick queue for decoded and renamed instructions. Each entry of a corresponding dependency matrix is configured to store a dependency bit for each other instruction in the pick queue. The processor speculates that loads will hit in the data cache, hit in the TLB and not have a read after write (RAW) hazard. For each unresolved load, the pick queue tracks dependent instructions via dependency vectors based upon the dependency matrix. If a load speculation is found to be incorrect, dependent instructions in the pick queue are reset to allow for subsequent picking, and dependent instructions in flight are canceled. On completion of a load miss, dependent operations are re-issued. On resolution of a TLB miss or RAW hazard, the original load is replayed and dependent operations are issued again from the pick queue.