Abstract:
The present invention provides a casting having increased crashworthiness including an aluminum alloy of about 6.0 wt % to about 8.0 wt % Si; about 0.12 wt % to about 0.25 wt % Mg; less than or equal to about 0.35 wt % Cu; less than or equal to about 4.0 wt % Zn; less than or equal to about 0.6 wt % Mn; and less than or equal to about 0.15 wt % Fe, wherein the cast body is treated to a T5 or T6 temper and has a tensile strength ranging from 100 MPa to 180 MPa and has a critical fracture strain greater than 10%. The present invention further provides a method of forming a casting having increased crashworthiness.
Abstract:
Improved trailers (e.g., semi-trailers) are disclosed. The trailers may include a floor having a top surface and a bottom surface, where the top surface is adapted to transport a payload, and an elongated shell connected to the bottom surface of the floor, where the elongated shell defines a portion of a substantially closed torsion-resistant chamber of the trailer. The trailers may have a torsion resistance that is substantially higher than conventional trailers of similar size and/or load capacity. The trailers may weigh substantially less than conventional trailers of similar size and/or load capacity. The trailers may realize a bending resistance that is at least equivalent to the bending resistance of conventional trailers of similar size and/or load capacity.
Abstract:
The present invention provides a casting having increased crashworthiness including an aluminum alloy of about 6.0 wt % to about 8.0 wt % Si; about 0.12 wt % to about 0.25 wt % Mg; less than or equal to about 0.35 wt % Cu; less than or equal to about 4.0 wt % Zn; less than or equal to about 0.6 wt % Mn; and less than or equal to about 0.15 wt % Fe, wherein the cast body is treated to a T5 or T6 temper and has a tensile strength ranging from 100 MPa to 180 MPa and has a critical fracture strain greater than 10%. The present invention further provides a method of forming a casting having increased crashworthiness.
Abstract:
An extruded node is disclosed comprising a longitudinally extending substantially hollow core and at least one longitudinally extending, hollow flange, extending outwardly of and integral with a longitudinally extending side portion of the core. This invention also provides a joined structure wherein at least one longitudinally extending lineal member has a hollow peripheral portion defined by walls having inside surfaces adapted to mate with outside surfaces of a mating hollow flange of the extruded node. In this joined structure the peripheral portion of the lineal member is inserted over the hollow flange of the node to an extent that the outer peripheral surface of the lineal member surrounds the integral wall of the node and the outside surfaces of the sidewalls of the hollow flange and the inside surfaces of the lineal member mate along substantially the entire length and around substantially the entire perimeter of the flange.
Abstract:
Improved trailers (e.g., semi-trailers) are disclosed. The trailers may include a floor having a top surface and a bottom surface, where the top surface is adapted to transport a payload, and an elongated shell connected to the bottom surface of the floor, where the elongated shell defines a portion of a substantially closed torsion-resistant chamber of the trailer. The trailers may have a torsion resistance that is substantially higher than conventional trailers of similar size and/or load capacity. The trailers may weigh substantially less than conventional trailers of similar size and/or load capacity. The trailers may realize a bending resistance that is at least equivalent to the bending resistance of conventional trailers of similar size and/or load capacity.
Abstract:
A reinforcement for a closure panel including an outer panel and an inner panel includes a palm area reinforcement for attachment to the outer panel and a latch area reinforcement for attachment to the inner panel, the latch area reinforcement being disposed on a depression in the reinforcement which is integral with the palm area reinforcement.
Abstract:
A method of joining a plurality of generally hollow frame members is provided. The generally hollow frame members are secured to central portions of core members. The core members are positioned in juxtaposition with respect to one another so as to enclose a space therebetween with the core member extending generally outwardly from the enclosed space. The core members are secured to one another. An associated frame assembly is also provided.
Abstract:
An extruded node is disclosed comprising a longitudinally extending substantially hollow core and at least one longitudinally extending, hollow flange, extending outwardly of and integral with a longitudinally extending side portion of the core. This invention also provides a joined structure wherein at least one longitudinally extending lineal member has a hollow peripheral portion defined by walls having inside surfaces adapted to mate with outside surfaces of a mating hollow flange of the extruded node. In this joined structure the peripheral portion of the lineal member is inserted over the hollow flange of the node to an extent that the outer peripheral surface of the lineal member surrounds the integral wall of the node and the outside surfaces of the sidewalls of the hollow flange and the inside surfaces of the lineal member mate along substantially the entire length and around substantially the entire perimeter of the flange.
Abstract:
The present invention provides a casting having increased crashworthiness including an aluminum alloy of about 6.0 wt % to about 8.0 wt % Si; about 0.12 wt % to about 0.25 wt % Mg; less than or equal to about 0.35 wt % Cu; less than or equal to about 4.0 wt % Zn; less than or equal to about 0.6 wt % Mn; and less than or equal to about 0.15 wt % Fe, wherein the cast body is treated to a T5 or T6 temper and has a tensile strength ranging from 100 MPa to 180 MPa and has a critical fracture strain greater than 10%. The present invention further provides a method of forming a casting having increased crashworthiness.
Abstract:
A two layer door is provided. The first layer is made of a plurality of metallic members with a portion of the metallic members having one or more channels adapted to receive one or more armor panels. The second layer is made of the channels of the metallic members and armor panels disposed within the channels. The door also has one or more pivotally attached panels to the door that are adapted to open at a preselected pressure differential across the door. The door is also available as a kit.