Abstract:
A distal portion of an electronic endoscope is formed with a cutaway portion and a distal end surface. The distal portion is provided with side-viewing and front-viewing capturing optical systems. The side-viewing capturing optical system has a side-viewing objective lens, a prism with a half mirror surface, and a varifocal lens. Light incident on the half-mirror surface from the side-viewing objective lens is reflected to be incident on a CCD through the varifocal lens. Moving the varifocal lens allows the side-viewing capturing optical system to switch from normal observation to magnifying observation and vice versa. In the magnifying observation, a best focus position resides on an extension, of an outer circumferential surface of the distal portion, facing the cutaway portion.
Abstract:
In an endoscope in which light transmitted from an optical fiber bundle using a positive lens is irradiated as illumination light, a glass rod having a diffusion face disposed on one of end faces is arranged between an aperture diaphragm that adjusts an amount of light from a light source and the optical fiber bundle that guides the light from the aperture diaphragm to a distal end portion of the endoscope, and light without a biased angular component is supplied to the optical fiber bundle so as to eliminate illumination light unevenness.
Abstract:
A distal portion of an electronic endoscope is formed with a cutaway portion and a distal end surface. The distal portion is provided with side-viewing and front-viewing capturing optical systems. The side-viewing capturing optical system has a side-viewing objective lens, a prism with a half mirror surface, and a varifocal lens. Light incident on the half-mirror surface from the side-viewing objective lens is reflected to be incident on a CCD through the varifocal lens. Moving the varifocal lens allows the side-viewing capturing optical system to switch from normal observation to magnifying observation and vice versa. In the magnifying observation, a best focus position resides on an extension, of an outer circumferential surface of the distal portion, facing the cutaway portion.
Abstract:
A connector includes a cable attachment ring that fits onto a signal cable, a circuit board attachment part that catches a circuit board, and a connecting pillar that connects the cable attachment ring and the circuit board attachment part. The cable attachment ring is detachable from the signal cable, and the circuit board attachment part is detachable from the circuit board.
Abstract:
In an endoscope system, a light guide for conducting illumination light from a light source to an endoscope distal end consists of a first fiber bundle and a second fiber bundle. Optical fibers of the first fiber bundle have a smaller numerical aperture than optical fibers of the second fiber bundle. A light volume control mechanism is controlled to project the illumination light only from the first fiber bundle in a close-up inspection mode. In an ordinary inspection mode, the illumination light is projected only from the second fiber bundle. When the volume of light projected from the second fiber bundle toward a target site is insufficient in the ordinary inspection mode, the light volume control mechanism is controlled to let the illumination light be projected from the first fiber bundle.
Abstract:
An electronic endoscope has an insert section to be introduced into a human body cavity. A distal portion of the insert section contains a CCD and a printed circuit board to which the CCD is bonded. In the insert section, a cable bundle being a bundle of coaxial cables extends. Each coaxial cable consists of a signal line, insulation surrounding the signal line, a braided wire surrounding the insulation, and an insulating jacket. The cylindrical braided wire is stranded into a single line, and is soldered as a ground line to a ground terminal of the printed circuit board. The signal line is pulled out of the coaxial cable with a length longer than the ground line. The signal line is soldered to an input/output terminal of the printed circuit board with a larger sag than the ground line.
Abstract:
An electronic endoscope has an insert section to be introduced into a human body cavity. A distal portion of the insert section contains a CCD and a printed circuit board to which the CCD is bonded. In the insert section, a cable bundle being a bundle of coaxial cables extends. Each coaxial cable consists of a signal line, insulation surrounding the signal line, a braided wire surrounding the insulation, and an insulating jacket. The cylindrical braided wire is stranded into a single line, and is soldered as a ground line to a ground terminal of the printed circuit board. The signal line is pulled out of the coaxial cable with a length longer than the ground line. The signal line is soldered to an input/output terminal of the printed circuit board with a larger sag than the ground line.
Abstract:
A lighting optical device is disposed in a distal portion of an endoscope, and illuminates a target with light transmitted through a light guide. An optical element has an incident surface facing the light guide, an outer circumferential portion having light reflection function, and a convex exit surface. In a lens mounting hole formed in the distal portion, a lens is housed in front of and at a predetermined distance away from the optical element fixed in a lens barrel. An outer diameter of the lens is greater than that of the optical element. To allow light rays, coming out of a peripheral portion of the exit surface of the optical element and traveling parallel with an optical axis, to be incident on the lens, a diameter of a space between the optical element and the lens is greater than or equal to the outer diameter of the optical element.
Abstract:
In an endoscope system, a light guide for conducting illumination light from a light source to an endoscope distal end consists of a first fiber bundle and a second fiber bundle. Optical fibers of the first fiber bundle have a smaller numerical aperture than optical fibers of the second fiber bundle. A light volume control mechanism is controlled to project the illumination light only from the first fiber bundle in a close-up inspection mode. In an ordinary inspection mode, the illumination light is projected only from the second fiber bundle. When the volume of light projected from the second fiber bundle toward a target site is insufficient in the ordinary inspection mode, the light volume control mechanism is controlled to let the illumination light be projected from the first fiber bundle.
Abstract:
In an endoscope in which light transmitted from an optical fiber bundle using a positive lens is irradiated as illumination light, a glass rod having a diffusion face disposed on one of end faces is arranged between an aperture diaphragm that adjusts an amount of light from a light source and the optical fiber bundle that guides the light from the aperture diaphragm to a distal end portion of the endoscope, and light without a biased angular component is supplied to the optical fiber bundle so as to eliminate illumination light unevenness.