Image processing apparatus for robot
    1.
    发明授权
    Image processing apparatus for robot 有权
    机器人图像处理装置

    公开(公告)号:US07151848B1

    公开(公告)日:2006-12-19

    申请号:US09429920

    申请日:1999-10-29

    IPC分类号: G06K9/00

    摘要: A robot control unit 42 and an image processing control unit (control unit of the image processing apparatus) 43 are incorporated into a robot controller 40. A camera CM is connected to the image processing control unit 43. A main body 1 of a robot is connected to the robot control unit 42 through an amplifier 41. A portable robot teaching pendant 80 connected to the robot control unit 42 is provided with a monitor display, and functions also as a teaching pendant of the image processing apparatus. Therefore, by using the teaching pendant 80, manipulation of image processing, and issuing of an instruction to a program for processing an image can be performed. Furthermore, an image obtained by a camera CM, and information relevant to the manipulation of the image processing apparatus such as an operation menu, etc. can be displayed on the monitor display. Therefore, an operator can efficiently perform all operations relevant to the robot, the camera, processing an image, etc. while watching a monitor screen.

    摘要翻译: 机器人控制单元42和图像处理控制单元(图像处理设备的控制单元)43并入机器人控制器40中。相机CM连接到图像处理控制单元43.机器人的主体1 通过放大器41连接到机器人控制单元42.连接到机器人控制单元42的便携式机器人示教装置80设置有监视器显示器,并且还用作图像处理装置的示教装置。 因此,通过使用示教装置80,可以执行对图像处理的操作,以及向用于处理图像的程序发出指令。 此外,可以在监视器显示器上显示由照相机CM获得的图像,以及与诸如操作菜单等的图像处理装置的操纵有关的信息。 因此,操作者可以在观看监视器屏幕的同时有效地执行与机器人,相机,处理图像等相关的所有操作。

    Vertical revolute joint robot
    2.
    发明授权
    Vertical revolute joint robot 失效
    垂直革命联合机器人

    公开(公告)号:US5065337A

    公开(公告)日:1991-11-12

    申请号:US474032

    申请日:1990-04-18

    申请人: Ryuichi Hara

    发明人: Ryuichi Hara

    CPC分类号: B25J9/06 B25J9/04 G05B19/4086

    摘要: A vertical revolute joint robot having an offset wrist, which is capable of rapidly calculating respective joint angles on the basis of a target position and orientation of an end effector, and hence is excellent in operation accuracy.A robot arm consists of first to third links, and the joint axis (Y0) of a first joint (1), which couples a base fixedly disposed within an operation space to the first link, extends perpendicularly to the axis of the base, whereas the joint axis (Z1) of a second joint (2), which couples the first and second links to each other, extends along the axis of the first link. The third link is mounted with a wrist offset relative to the arm, and an end effector is mounted on the offset wrist. A computer provided in the robot calculates a fist joint angle (.theta.1) in accordance with an arithmetic equation, which is fulfilled between corresponding ones of transformation matrices employed for coordinate transformation among zeroth to sixth coordinate systems respectively set for first to sixth joints (1)-(6) and an end effector mounting face center, the equation being represented as a function of vector components indicative of the position of the origin of the sixth coordinate system with respect to the zeroth coordinate system and determinable from target position and orientation of the end effector, link lengths determined in dependence on the robot arrangement, and offset distances (d2-d4). The computer calculates other joint angles (.theta.2-.theta.6) in accordance with similar arithmetic equations.

    Method for acceleration and deceleration control of servomotors
    3.
    发明授权
    Method for acceleration and deceleration control of servomotors 失效
    伺服电机加减速控制方法

    公开(公告)号:US5004968A

    公开(公告)日:1991-04-02

    申请号:US381396

    申请日:1989-07-05

    IPC分类号: H02P29/00 G05B19/416

    摘要: A method for acceleration and deceleration control of servomotors always brings out the maximum operating capability of a machine equipped with servomotors, such as a robot, NC machine tool, etc. and accurately moves a respective operating section of the machine, e.g., robot work point, tool, etc., along a commanded path. When a command is read from a program, the speed command value is divided by a maximum allowable (Am) of the machine, set previously, to determine a time constant (T) for acceleration and deceleration control (Step S2), and the time constant is divided by a sampling period to obtain a number (n) of times of commanded speed sampling (Step S3). The servomotor is driven at a controlled speed after the acceleration/deceleration process. The controlled speed is obtained by dividing a sum of a commanded speed of the current sampling period and commanded speeds sampled in the previous (n-1) periods preceding the current period, by the number (n) of times of sampling. Thus, accelerated and decelerated operations of the machine are always performed at the maximum allowable acceleration/deceleration, whereby the maximum operating capability of the machine is available and the respective machine operating section can be moved accurately along the commanded path.

    摘要翻译: PCT No.PCT / JP88 / 01241 Sec。 371日期:1989年7月5日 102(e)日期1989年7月5日PCT提交1988年12月9日PCT公布。 出版物WO89 / 06066 日期:1989年6月29日。伺服电机的加减速控制方法总是提供装备有机器人,数控机床等伺服电动机的机器的最大操作能力,并精确地移动相应的操作部分 机器,例如机器人工作点,工具等,沿着命令的路径。 当从程序中读出命令时,将速度指令值除以预先设定的机器的最大允许量(Am),以确定加速和减速控制的时间常数(T)(步骤S2) 常数除以采样周期,以获得指令速度采样次数(n)(步骤S3)。 伺服电机在加速/减速过程后以受控的速度驱动。 控制速度通过将当前采样周期的指令速度与在当前周期之前的(n-1)个周期中采样的指令速度之和除以采样次数(n)来得到。 因此,机器的加速和减速操作总是以最大允许的加速/减速进行,从而可以获得机器的最大操作能力,并且可以沿着指令路径精确地移动各个机器操作部。

    Track control method for a robot
    4.
    发明授权
    Track control method for a robot 失效
    机器人跟踪控制方法

    公开(公告)号:US4970370A

    公开(公告)日:1990-11-13

    申请号:US315684

    申请日:1989-02-14

    申请人: Ryuichi Hara

    发明人: Ryuichi Hara

    摘要: There is provided a track control method for a robot, in which a welding operation can be executed by moving a workpiece along a predetermined track, with respect to a fixed welding torch. The welding torch (1) is disposed fixedly, while the workpiece (W) is held by means of a robot hand. Before starting the welding operation, the workpiece is located at each target point (a1, a2), and a workpiece coordinate position (T1, T2) corresponding to a hand operating position, at each target point, is taught. During the welding operation, a playback function of the robot is utilized for driving various robot operating sections, including robot arms and a robot hand, so that positions to which the workpiece is moved are coincident with a series of calculated workpiece coordinate positions. Thereupon, the welding is performed along the predetermined track on the workpiece as the workpiece moves, despite the change of the position of the workpiece relative to the distal end of an arm (4).

    摘要翻译: PCT No.PCT / JP88 / 00777 Sec。 371日期1989年2月14日 102(e)日期1989年2月14日PCT提交1988年8月4日PCT公布。 第WO89 / 01199号公报 日期为1989年2月9日。提供了一种用于机器人的轨迹控制方法,其中可以通过相对于固定焊炬沿预定轨道移动工件来执行焊接操作。 焊枪(1)固定地设置,而工件(W)通过机器人手保持。 在开始焊接操作之前,工件位于每个目标点(a1,a2),并且教导了在每个目标点处对应于手动操作位置的工件坐标位置(T1,T2)。 在焊接操作期间,机器人的重放功能被用于驱动包括机器人手臂和机器人手在内的各种机器人操作部分,使得工件移动的位置与一系列计算的工件坐标位置一致。 因此,尽管工件相对于臂(4)的远端的位置发生变化,但是随着工件移动,沿着工件上的预定轨迹进行焊接。

    Tool posture control method for a robot
    5.
    发明授权
    Tool posture control method for a robot 失效
    机器人的工具姿势控制方法

    公开(公告)号:US4967125A

    公开(公告)日:1990-10-30

    申请号:US432747

    申请日:1989-10-25

    申请人: Ryuichi Hara

    发明人: Ryuichi Hara

    CPC分类号: G05B19/41 G05B2219/50353

    摘要: A tool posture control method for a robot is provided, which is capable of always controlling the posture of a tool as intended, between a starting point and an ending point of operation, in moving the tool from the starting point toward the ending point along a straight line or a circular arc. Based on positions and postures of the tool at a starting point and an ending point, previously given to the robot for instruction, and a tool position at an intermediate point, additionally given as required for instruction, a control device calculates (S2) a first angle formed between the tool and a datum plane, at the starting point, a second angle formed between the tool projected on the datum plane and a datum line set on the datum plane, at the startingt point, and the rotational position of the tool at the starting point around a tool axis, and then calculates (S3) the first angle, the second angle, and the rotational position around the tool axis, at the ending point. Thereafter, the control device interpolates (S4) the tool position, the first angle, the second angle, and the rotational position around the tool axis, between the starting and ending points, and distributes (S6) pulses to servo circuits for driving servomotors, in accordance with the result of the interpolation, thereby controlling the position and posture of the tool between the starting and ending points.

    摘要翻译: PCT No.PCT / JP89 / 00262 Sec。 371日期:1989年10月25日 102(e)日期1989年10月25日PCT 1989年3月9日PCT公布。 出版物WO89 / 08878 日本1989年9月21日。一种用于机器人的工具姿势控制方法,其能够始终在起始点和终点操作之间,在起始点和起始点之间始终控制工具的姿势, 指向直线或圆弧的终点。 基于先前给予机器人指示的起点和终点处的工具的位置和姿势以及根据需要另外给出的中间点的工具位置,控制装置计算(S2)第一 在工具和基准平面之间形成的角度,在起点处,在投影在基准平面上的工具与在基准面上设置的基准线之间,起始点处的第二角度以及工具在起始点处的旋转位置 围绕刀具轴的起始点,然后在终点处计算(S3)围绕刀具轴的第一角度,第二角度和旋转位置。 此后,控制装置在起始点和终点之间插入(S4)工具位置,第一角度,第二角度和围绕工具轴线的旋转位置,并将(S6)脉冲分配到用于驱动伺服电动机的伺服电路, 根据插补的结果,由此控制工具在起始点和终点之间的位置和姿势。

    Velocity control apparatus
    6.
    发明授权

    公开(公告)号:US4894596A

    公开(公告)日:1990-01-16

    申请号:US265676

    申请日:1988-10-31

    申请人: Ryuichi Hara

    发明人: Ryuichi Hara

    IPC分类号: G05B19/416

    摘要: A velocity control apparatus according to the invention controls velocity when moving the movable element of a robot hand or NC machine tool and includes velocity override control for changing the movable element command velocity at a predetermined rate, and acceleration/deceleration circuits (2X, 2Y) of a time constant inversely proportional to a velocity set by the override control. When the amount of a velocity override is changed, the time constant of the acceleration/deceleration circuits (2X, 2Y) is altered in dependence upon the commanded velocity, and an accumulated quantity of command pulses at the time of acceleration/deceleration is controlled so as to be held constant. This makes it possible to control movement at a predetermined velocity without changing the trajectory of the movable element at a corner portion.

    Industrial robot circular arc control method for controlling the angle
of a tool
    7.
    发明授权
    Industrial robot circular arc control method for controlling the angle of a tool 失效
    工业机器人圆弧控制方法,用于控制刀具的角度

    公开(公告)号:US4698777A

    公开(公告)日:1987-10-06

    申请号:US700706

    申请日:1985-01-25

    摘要: An industrial robot arc control method subjects the position of a working member to circular-arc control by interpolation while controlling the target angle of the working member with respect to a surface to be worked, which working member is mounted on the wrist of an industrial robot. The industrial robot circular arc control method includes obtaining corresponding points (P1, P2 . . . ; Q1, Q2 . . . ;) of the tip and base of the working member (TC) at plural taught points for circular-arc control of the tip of the working member, which is mounted on a wrist (HD) of the robot, finding interpolated points of the tip and base of the working member by interpolation from the corresponding taught points, and obtaining command quantities for the motion axes of the robot from the interpolated points.

    摘要翻译: PCT No.PCT / JP84 / 00268 Sec。 371日期1985年1月25日第 102(e)日期1985年1月25日PCT申请日1984年5月25日PCT公布。 出版物WO84 / 04829 日期:1984年12月6日。工业机器人电弧控制方法通过插入控制工件的位置进行圆弧控制,同时控制工作构件相对于被加工表面的目标角度,该工作构件被安装 在工业机器人的手腕上。 工业机器人圆弧控制方法包括在多个教导点处获得工作构件(TC)的尖端和底部的对应点(P1,P2 ...,Q1,Q2 ...),用于圆弧控制 安装在机器人的手腕(HD)上的工作构件的顶端通过从相应的教导点的插值找到工作构件的尖端和底部的内插点,并获得机器人的运动轴的指令量 从内插点。

    Method for calibrating force sensor mounted on robot, and robot
    8.
    发明授权
    Method for calibrating force sensor mounted on robot, and robot 失效
    用于校准安装在机器人上的力传感器和机器人的方法

    公开(公告)号:US06382012B2

    公开(公告)日:2002-05-07

    申请号:US09253719

    申请日:1999-02-22

    IPC分类号: G01L2500

    CPC分类号: G01L25/00

    摘要: A method for executing calibration without having to dismount a force sensor from a robot, and an apparatus for executing this method are provided. When a robot mounted with a calibrated force sensor begins to be operated, any tool whose position of the center of gravity and weight are immune from change is fitted, and a command for acquiring reference data is given to execute operational programs. Reference data V0 of matrices consisting of differences between strain gage outputs (S1, S2) of the force sensor in any predetermined posture and strain gage outputs in other predetermined postures differing both from that posture and from one another are calculated and stored (S3-1 to S7). When the measuring accuracy of the force sensor drops, the tool used when the reference data were acquired is mounted on the robot, and the same procedures S1 to S6 are executed, and the data V0 corresponding to the reference data are calculated. From the data V′0 and the reference data V0 is calculated a parameter M for updating the calibration matrices.

    摘要翻译: 提供了一种用于执行校准而不必从机器人拆卸力传感器的方法,以及用于执行该方法的装置。 当安装有校准力传感器的机器人开始操作时,任何重心和重量位置都不受变化影响的工具被安装,并且获得参考数据的命令来执行操作程序。 计算并存储由任意预定姿势的力传感器的应变计输出(S1,S2)和应变计输出之间的差异的矩阵的参考数据V0和不同于其他预定姿势的应变计输出(S3-1 到S7)。 当力传感器的测量精度下降时,将获取参考数据时使用的工具安装在机器人上,并且执行相同的步骤S1至S6,并且计算与参考数据相对应的数据V0。 从数据V'0和参考数据V0计算用于更新校准矩阵的参数M.

    Apparatus for picking up articles using a vision controlled robot
    9.
    发明授权
    Apparatus for picking up articles using a vision controlled robot 有权
    使用视觉控制机器人拾取物品的装置

    公开(公告)号:US06328523B1

    公开(公告)日:2001-12-11

    申请号:US09295364

    申请日:1999-04-21

    IPC分类号: B25J1308

    摘要: A group of bolts are suppled into a placing surface of a tray, an isolated bolt is searched for by a visual sensor, and its deviation from a standard position at the time of teaching is determined. The isolated bolt is picked up by a robot that has been taught how to pick up an isolated bolt laying in a standard position. The position of the robot's hand is corrected according to the deviation from the standard position before the robot attempts to pick up the located isolated bolt. If no isolated bolt is found, a shaking device 1 is operated to loosen the piled-up bolts, and a new isolated bolt is again searched for by the visual sensor. The isolated bolt, if found, is picked up. The picking-up operation may be performed by searching for an isolated small set of bolts using a three-dimensional visual sensor. The oscillating excitation can also be provided by a robot. Also, the piled-up bolts may be loosened or disentangled using a robot equipped with a tool for leveling the pile of bolts or by using a gas jet.

    摘要翻译: 一组螺栓被提供到托盘的放置表面中,由视觉传感器搜索隔离的螺栓,并且确定其在教导时与标准位置的偏差。 被隔离的螺栓由机器人拾取,该机器人已经被教导如何拿起放置在标准位置的隔离螺栓。 机器人的手的位置根据机器人试图拿起定位的隔离螺栓之前与标准位置的偏差进行校正。 如果没有发现隔离的螺栓,则操作摇动装置1以松开堆积螺栓,并且再次通过视觉传感器搜索新的隔离螺栓。 被隔离的螺栓,如果发现,被拾起。 可以通过使用三维视觉传感器搜索隔离的小套螺栓来执行拾取操作。 振荡激励也可由机器人提供。 此外,堆叠的螺栓可以使用装备有用于使螺栓堆整平或使用气体射流的工具的机器松动或解开。

    Robot profile control method
    10.
    发明授权
    Robot profile control method 失效
    机器人型材控制方法

    公开(公告)号:US5646493A

    公开(公告)日:1997-07-08

    申请号:US446299

    申请日:1995-05-22

    摘要: A method of obtaining a force of each axis of a robot from the product of positional deviation and positional gain. A vector having components of the forces as many as the number of axes is defined and transformed into a vector on the base coordinate system. Based on the vector, a normal line vector on the profiling object plane is determined. The attitude of the robot is controlled so that the direction of the normal line vector may coincide with the Z axis of the tool coordinate system. Next, the positional gain of each axis, which would serve to make the force in the direction of the normal line vector constant, is determined, with the position deviation fixed. Further, the tangential direction of the moving path at the position is obtained, and the moving target position of the robot is determined in that direction. Then, the amount to be added to the position deviation of each axis, which is required to realize the speed for moving the robot RB toward this moving target position, is calculated, and is added to a positional deviation calculation section of a position control loop.

    摘要翻译: 从位置偏差和位置增益的乘积获得机器人各轴的力的方法。 定义具有与轴数相同数量的力的分量的矢量并将其变换为基座坐标系上的矢量。 基于向量,确定轮廓对象平面上的法线矢量。 控制机器人的姿态,使得法线向量的方向与工具坐标系的Z轴重合。 接下来,确定用于使法线方向的力恒定的各轴的位置增益,同时固定位置偏差。 此外,获得位置处的移动路径的切线方向,并且在该方向上确定机器人的移动目标位置。 然后,计算将实现用于使该机器人RB朝向该移动目标位置移动的速度所需的每个轴的位置偏移量的相加量,并且被添加到位置控制环路的位置偏差计算部 。