Abstract:
Equipment for manufacturing ceramic wires is disclosed. The manufacturing equipment can comprise a deposition unit for depositing the ceramic wire on a wire substrate, a loading/unloading unit having a release reel for providing the wire substrate to the deposition unit and a coiling reel for discharging the wire substrate from the deposition unit, and at least one buffer unit arranged between the loading/unloading unit and the deposition unit. The buffer unit may continuously be providing the wire substrate to the deposition unit or continuously winding the wire substrate from the deposition unit when the release reel or the coiling reel is replaced.
Abstract:
A super conductor is formed by a process including a first step of forming liquid-phase rare earth-copper-barium oxide by heat treating a superconductor precursor including a rare earth element, barium, and copper, a second step of forming a first superconductor of the rare earth-copper-barium oxide that is epitaxially grown from the liquid-phase rare earth-copper-barium oxide, and a third step of forming a second superconductor of the rare earth-copper-barium oxide by heat treating the first superconductor, wherein the heat treatment of the third step is performed in an atmosphere in which the rare earth-copper-barium oxide has no liquid phase.
Abstract:
Provided is a superconducting wire. The superconducting wire comprises a substrate, a superconducting film on the substrate and a pinning center in the superconducting film. The superconducting film includes Y1-xRExBCO and the pinning center has an additive of Ba2YNbO6.
Abstract:
A super conductor is formed by a process including a first step of forming liquid-phase rare earth-copper-barium oxide by heat treating a superconductor precursor including a rare earth element, barium, and copper, a second step of forming a first superconductor of the rare earth-copper-barium oxide that is epitaxially grown from the liquid-phase rare earth-copper-barium oxide, and a third step of forming a second superconductor of the rare earth-copper-barium oxide by heat treating the first superconductor, wherein the heat treatment of the third step is performed in an atmosphere in which the rare earth-copper-barium oxide has no liquid phase.
Abstract:
The present invention relates to a superconductor and a method of manufacturing the same. The superconductor comprises: a substrate having a tape shape that extends in a first direction and having surfaces which are defined as a top surface, a bottom surface, and both side surfaces; a superconductive layer positioned on the top surface of the substrate; a first stabilizing layer disposed on the superconductive layer and containing a first metal; a protective layer disposed on the first stabilizing layer and containing a second metal which is different from the first metal; and an first alloy layer disposed between the stabilizing layer and the protective layer and containing the first and second metals.
Abstract:
The present invention relates to a superconductor and a method of manufacturing the same. The superconductor comprises: a substrate having a tape shape that extends in a first direction and having surfaces which are defined as a top surface, a bottom surface, and both side surfaces; a superconductive layer positioned on the top surface of the substrate; a first stabilizing layer disposed on the superconductive layer and containing a first metal; a protective layer disposed on the first stabilizing layer and containing a second metal which is different from the first metal; and an first alloy layer disposed between the stabilizing layer and the protective layer and containing the first and second metals.
Abstract:
Provided is a cryogenic refrigeration system. The cryogenic refrigeration system includes a cryogenic refrigerator, and a heat dissipation module configured to cool the cryogenic refrigerator. Here, the heat dissipation module includes a condenser configured to condense a refrigerant that cools the cryogenic refrigerator, and a heat exchanger connected to the cryogenic refrigerator to circulate the refrigerant between the cryogenic refrigerator and the condenser, thereby cooling the cryogenic refrigerator.
Abstract:
Provided is a method of manufacturing a superconducting wire. A superconducting tape having an outer surface is provided, a copper layer is formed on the outer surface of the superconducting tape, and first metal tape and second metal tape are respectively attached on a first surface and a second surface of the superconducting tape on which the copper layer is formed.
Abstract:
Provided is a method of forming a superconducting body. The method includes providing amorphous rare-earth-copper-barium oxide and performing a heat treatment on the amorphous rare-earth-copper-barium oxide to form a superconductor containing distributed rare-earth oxide grains.
Abstract:
Provided is a method of manufacturing a superconducting wire. A superconducting tape having an outer surface is provided, a copper layer is formed on the outer surface of the superconducting tape, and first metal tape and second metal tape are respectively attached on a first surface and a second surface of the superconducting tape on which the copper layer is formed.