Abstract:
Provided is a remote weapon device including a firing arm configured to fire a bullet at a target in response to a firing signal; a driver coupled to the firing arm and configured to move the firing arm to aim the firing arm at the target; a detector configured to detect shaking of the firing arm with respect to a zero position, the zero position corresponding to a position at which the firing arm points at the target and fires the bullet at the target; and a controller configured to obtain a shaking pattern based on the detected shaking and configured to generate the firing signal controlling a firing time when the firing arm fires the bullet according to the shaking pattern to control the firing arm to fire the bullet.
Abstract:
A white balance correcting apparatus and a white balance correcting method are provided. A white balance correcting apparatus includes a white balance corrector configured to divide an input image into a plurality of blocks, determine, using a reference color temperature line, adjusted color temperatures of blocks included in a white area among the plurality of blocks, and calculate red (R) and blue (B) gains to which different weights are applied according to the adjusted color temperatures of the blocks.
Abstract:
Provided is an image processing apparatus and method. The image processing apparatus includes: a detection unit configured to detect a motion by using a long-exposed image in a current frame and a long-exposed image in a previous frame; and a processing unit configured to perform infinite impulse response (IIR) filtering on a short-exposed image in the current frame according to a result of the detecting of the motion which is obtained from the detection unit.
Abstract:
Provided is a method of driving a system for a robot including obtaining scan data which includes information about at least one of a coordinate and a direction of the robot, estimating a plurality of location changes of the robot by matching a plurality of consecutive scan data pairs of the obtained scan data, generating a path of the robot by connecting the estimated location changes, estimating a position of a corrected instantaneous center of rotation (ICR), and correcting the plurality of consecutive scan data pairs based on the corrected ICR.
Abstract:
A message processing apparatus that processes a message between processors according to an embodiment of the present invention solves a problem that occurs when a message is processed by using interrupt or polling processing by processing messages having priorities that are transmitted between transmission and receiving processors that use a shared memory by using a polling thread and a kernel module, thereby providing a priority-based message processing method without applying a load to a system.
Abstract:
An Ethernet-based image transmitting/receiving system including a image transmitting device configured to generate and transmit a packet including at least one multiplexed signal of a luminance signal and a chrominance signal; an image receiving device configured to receive the packet, extract the luminance signal and the chrominance signal from the multiplexed signal of the packet, store the luminance signal and the chrominance signal, and output the luminance signal and the chrominance signal by synchronizing lines with each other based on the synchronization information; and an Ethernet cable configured to connect the image transmitting device to the image receiving device and transmit the packet.
Abstract:
Provided is a wide angle lens system including: a first lens group having a negative refractive power; and a second lens group having a positive refractive power, wherein the first lens group and the second lens group are provided in that order from an object to an image, and the lens system satisfies a first conditional expression: 16
Abstract translation:提供一种广角镜头系统,包括:具有负屈光力的第一透镜组; 以及具有正折射力的第二透镜组,其中所述第一透镜组和所述第二透镜组以从物体到图像的顺序设置,并且所述透镜系统满足第一条件表达式:16 <| L / f | <17.5其中L表示距离物体最靠近的第一透镜组的透镜表面与最靠近图像提供的第二透镜组的透镜表面的距离,f表示广角透镜系统的焦距。
Abstract:
Disclosed is a surveillance apparatus such as a surveillance camera and a digital video recorder. The surveillance apparatus includes: an analog-to-digital converter configured to convert an analog video signal, of at least one image of a region captured by an optical system, into digital video data of the region; and a main controller configured to detect a current motion region from the digital video data of the region, remove a high frequency component of the region except the current motion region, and transmit the digital video data of the region, from which the high frequency component is removed, to a target device over a communication network.
Abstract:
Provided are a carrier tape feeding device, a chip mounting system, and a chip mounting method. The carrier tape feeding device includes: a transfer unit for transferring a first carrier tape and a second carrier tape sequentially to a chip mounting apparatus; a rotation unit selectively engaged to a part of the first carrier tape with which a part of the second carrier tape contacts, and for transferring the second carrier tape to the transfer unit; a detecting sensor unit for detecting sequential existence of the first carrier tape or the second carrier tape supplied to the transfer unit, and existence of the second carrier tape supplied to the rotation unit; and a controller for determining existence of the first carrier tape based on a signal detected by the detecting sensor unit, and controlling at least one of the transfer unit and the rotation unit to be driven based on the existence of the first carrier tape.
Abstract:
Provided is a laser sensor assembly and a method of controlling the laser sensor assembly. A laser sensor assembly includes a supporting unit; a rotary shaft unit formed onto the supporting unit, wherein the rotary shaft unit is rotatable, and has at least one bent portion to form a certain angle with respect to a rotational axis of the rotary shaft unit; and a laser sensor unit coupled with the bent part of the rotary shaft unit to form a certain angle with respect to the rotational axis of the rotary shaft unit.