Abstract:
A vapor deposition device (50) in accordance with the present invention is a vapor deposition device for forming a film on a film formation substrate (60), the vapor deposition device including a vapor deposition source (80) that has an injection hole (81) from which vapor deposition particles are injected, a vapor deposition particle crucible (82) for supplying the vapor deposition particles to the vapor deposition source (80), and a rotation motor (86) for changing a distribution of the injection amount of the vapor deposition particles by rotating the vapor deposition source (80).
Abstract:
A playback apparatus and method that executes an application while playing back a digital stream. A mixer is configured to, when a flag included in a playlist is set to ON, mix an output of a click sound using sound data with an audio output of the digital stream when a user performs an operation on an application while the application is executed. When the flag is set to OFF, the mixer refrains from mixing the output of the click sound with the audio output.
Abstract:
An energy saving support device supports energy saving of an air conditioner and includes an acquiring unit, a first energy calculating unit, a second energy calculating unit, an information generating unit and a reporting unit. The acquiring unit acquires operating data regarding the air conditioner. The first energy calculating unit determines a total consumed energy or a standard consumed energy of the air conditioner as a comparison target energy based on the operating data acquired by the acquiring unit. The second energy calculating unit determines a low-COP consumed energy based on the operating data acquired by the acquiring unit. The information generating unit generates room-for-energy-saving information in order to determine a potential for energy saving based on the comparison target energy and the low-COP consumed energy. The reporting unit reports the room-for-energy-saving information.
Abstract:
A load processing balance setting apparatus includes first and second air-conditioners for targeted first and second areas, a calculating unit, a determining unit and an adjusting unit. The first area is included within the second area. The calculating unit calculates a sum of an air-conditioning load for the first and second air-conditioners. Preferably, the determining unit determines a first and second processing throughputs for the first and second air-conditioners so that a COP (Coefficient of Performance) for the sum of the air-conditioning loads calculated by the calculating unit is maximized or is equal to or greater than a predetermined level, or so that a power consumption level for the sum of the air-conditioning loads calculated by the calculating unit is minimized or is equal to or less than a predetermined level. The adjusting unit controls the first and second air-conditioners based on the first and second processing throughputs.
Abstract:
A vapor deposition particle emitting device of the present invention includes: a nozzle section (110) having emission holes (111) from which gaseous vapor deposition particles are emitted out; a heating plate unit (100), provided in the nozzle section (110), which is made up of heating plates (101) each having a surface on which a vapor deposition material remains as a result of adherence of vapor deposition particles to the surface; and a heating device (160) for heating the vapor deposition material, which is thus remaining on the surface of each of the heating plates (101), so that a temperature of the vapor deposition material is not less than a temperature at which to become transformed into gaseous form.
Abstract:
A vapor deposition particle injection device (501) of the present invention includes: vapor deposition particle generating sections (110) and (120) for generating vapor deposition particles in the form of vapor by heating vapor deposition materials (114) and (124); and a nozzle section (170) which (i) is connected to the vapor deposition particle generating sections (110) and (120) and (ii) has an injection hole (171) from which the vapor deposition particles generated by the vapor deposition particle generating sections (110) and (120) are injected outward. The vapor deposition particle generating section (120) has a smaller capacity for the vapor deposition material than the vapor deposition particle generating section (110).
Abstract:
A film formation substrate (200) is arranged such that (i) a base end, in a y-axis direction, of a film-thickness-gradually-diminishing part (23sR) of a first film (23R) overlaps a first film formation region (24R), and (ii) a film-thickness-gradually-diminishing part (23sB) of a second film (23B) is disposed on an outside, in the y-axis direction, of a second film formation region (24B) and overlaps the film-thickness-gradually-diminishing part (23sR) of the first film (23R) so as to compensate for a gradually diminished thickness of the film-thickness-gradually-diminishing part (23sR).
Abstract:
A layer (71), made from a material that is attracted by a magnet, is formed in at least part of a chamber component (70), which at least part makes in contact with a film forming material. A method for collecting a film forming material includes the steps of: (a) exfoliating an attachment (22) which has attached to a surface of the chamber component (70); and (b) collecting the attachment (22) by separating a fragment of the layer (71), which fragment has been exfoliated in the step (a), while causing the fragment to be attracted by a magnet (202a).
Abstract:
A vapor deposition method of the present invention includes the steps of (i) preparing a mask unit including a shadow mask (81) and a vapor deposition source (85) fixed in position relative to each other, (ii) while moving at least one of the mask unit and the film formation substrate (200) relative to the other, depositing a vapor deposition flow, emitted from the vapor deposition source (85), onto a vapor deposition region (210), and (iii) adjusting the position of a second shutter (111) so that the second shutter (111) blocks a vapor deposition flow traveling toward the vapor deposition unnecessary region (210).
Abstract:
After a rod-like titanium material 20 is accommodated in a generally linear-shaped groove 13 of a first mold 7, a first guide portion 15 of a second mold 8 is fitted to the groove 13. Thereafter, the first mold 7 is moved along an arrow A direction relative to the second mold 8 fixed to an anchor block, by which the titanium material 20 substantially immovably retained in the groove 13 of the first mold 7 is bent and pushed into a through hole 24 of the second mold 8 by the first guide portion 15, thus being plastically deformed.