摘要:
A vapor deposition device (50) in accordance with the present invention is a vapor deposition device for forming a film on a film formation substrate (60), the vapor deposition device including a vapor deposition source (80) that has an injection hole (81) from which vapor deposition particles are injected, a vapor deposition particle crucible (82) for supplying the vapor deposition particles to the vapor deposition source (80), and a rotation motor (86) for changing a distribution of the injection amount of the vapor deposition particles by rotating the vapor deposition source (80).
摘要:
A vapor deposition particle emitting device of the present invention includes: a nozzle section (110) having emission holes (111) from which gaseous vapor deposition particles are emitted out; a heating plate unit (100), provided in the nozzle section (110), which is made up of heating plates (101) each having a surface on which a vapor deposition material remains as a result of adherence of vapor deposition particles to the surface; and a heating device (160) for heating the vapor deposition material, which is thus remaining on the surface of each of the heating plates (101), so that a temperature of the vapor deposition material is not less than a temperature at which to become transformed into gaseous form.
摘要:
A vapor deposition particle injection device (501) of the present invention includes: vapor deposition particle generating sections (110) and (120) for generating vapor deposition particles in the form of vapor by heating vapor deposition materials (114) and (124); and a nozzle section (170) which (i) is connected to the vapor deposition particle generating sections (110) and (120) and (ii) has an injection hole (171) from which the vapor deposition particles generated by the vapor deposition particle generating sections (110) and (120) are injected outward. The vapor deposition particle generating section (120) has a smaller capacity for the vapor deposition material than the vapor deposition particle generating section (110).
摘要:
A film formation substrate (200) is arranged such that (i) a base end, in a y-axis direction, of a film-thickness-gradually-diminishing part (23sR) of a first film (23R) overlaps a first film formation region (24R), and (ii) a film-thickness-gradually-diminishing part (23sB) of a second film (23B) is disposed on an outside, in the y-axis direction, of a second film formation region (24B) and overlaps the film-thickness-gradually-diminishing part (23sR) of the first film (23R) so as to compensate for a gradually diminished thickness of the film-thickness-gradually-diminishing part (23sR).
摘要:
A layer (71), made from a material that is attracted by a magnet, is formed in at least part of a chamber component (70), which at least part makes in contact with a film forming material. A method for collecting a film forming material includes the steps of: (a) exfoliating an attachment (22) which has attached to a surface of the chamber component (70); and (b) collecting the attachment (22) by separating a fragment of the layer (71), which fragment has been exfoliated in the step (a), while causing the fragment to be attracted by a magnet (202a).
摘要:
A vapor deposition method of the present invention includes the steps of (i) preparing a mask unit including a shadow mask (81) and a vapor deposition source (85) fixed in position relative to each other, (ii) while moving at least one of the mask unit and the film formation substrate (200) relative to the other, depositing a vapor deposition flow, emitted from the vapor deposition source (85), onto a vapor deposition region (210), and (iii) adjusting the position of a second shutter (111) so that the second shutter (111) blocks a vapor deposition flow traveling toward the vapor deposition unnecessary region (210).
摘要:
A vapor deposition device (1) performs a vapor deposition treatment to form a luminescent layer (47) having a predetermined pattern on a film formation substrate (40). The vapor deposition device includes: a nozzle (13) having a plurality of injection holes (16) from which vapor deposition particles (17), which constitute the luminescent layer, are injected toward the film formation substrate when the vapor deposition treatment is carried out; and a plurality of control plates (20) provided between the nozzle and the film formation substrate and restricting an incident angle, with respect to the film formation substrate, of the vapor deposition particles injected from the plurality of injection holes. The nozzle includes: a nozzle main body (14b) in a container shape having an opening (14c) on a surface thereof on a film formation substrate side and (ii) a plurality of blocks (15) covering the opening and separated from each other, each of the plurality of blocks having the plurality of injection holes. The above arrangement allows a vapor-deposited film pattern to be formed with high definition.
摘要:
TFT substrate (10) includes a plurality of pixel regions each including light emitting regions of at least three colors, which light emitting regions include light emitting layers (23R(1), 23G, 23R(2), and 23B), respectively, and two adjacent ones of the light emitting regions are a combination other than a combination of (i) a light emitting region included in a light emitting layer (23G) of a color having a highest current efficiency in a case where the light emitting layers of the light emitting regions of the at least three colors emit light having an identical luminance and (ii) a light emitting region included in a light emitting layer (23B) of a color having a lowest current efficiency in a case where the light emitting layers of the light emitting regions of the at least three colors emit light having an identical luminance.
摘要:
A vapor deposition device includes a vapor deposition source (60) having a plurality of vapor deposition source openings (61) that discharge vapor deposition particles (91), a limiting unit (80) having a plurality of limiting openings (82), and a vapor deposition mask (70) in which a plurality of mask openings (71) are formed only in a plurality of vapor deposition regions (72) where the vapor deposition particles that have passed through a plurality of limiting openings reach. The plurality of vapor deposition regions are arranged along a second direction that is orthogonal to the normal line direction of the substrate (10) and the movement direction of the substrate, with non-vapor deposition regions (73) where the vapor deposition particles do not reach being sandwiched therebetween. Mask openings through which the vapor deposition particles pass are formed at different positions in the movement direction of the substrate from the positions of the non-vapor deposition regions located on a straight line parallel to the second direction, as viewed along the normal line direction of the substrate. Accordingly, it is possible to stably form a vapor deposition coating film in which edge blurring is suppressed at a desired position on a substrate.
摘要:
A masking film (13) is formed so as to have an opening in a display region (R1) (luminescent region) and a sealing region. Subsequently, luminescent layers (8R, 8G, and 8B) having a stripe pattern are formed. Then, the masking film (13) is peeled off, so that the luminescent layers (8R, 8G, and 8B) patterned with high resolution are provided.