摘要:
Provided is a storage device capable of increasing its life cycle and operating method thereof. The storage device includes a nonvolatile memory device that stores data and a controller that controls the nonvolatile memory device. The controller receive can modify a write time-out value of the nonvolatile memory device in accordance with predetermined conditions, such as request from a host or exceeding of a predefined life cycle.
摘要:
Disclosed is Zr—Ti—Ni(Cu)-based filler alloy composition having low melting point for brazing titanium and titanium alloys. The Zr—Ti—Ni(Cu)-based alloy composition is expressed as: ZraTibNic (Formula 1) where a, b and c denote atomic % of Zr, Ti and Ni, respectively; 47≦a≦52; 24≦b≦30; 22≦c≦26; and 0.3
摘要翻译:公开了用于钎焊钛和钛合金的具有低熔点的Zr-Ti-Ni(Cu)基填充合金组合物。 Zr-Ti-Ni(Cu)基合金组成表示为:ZraTibNic(式1)其中a,b和c分别表示Zr,Ti和Ni的原子%; 47 @ a @ 52; 24 @ b @ 30; 22 @ c @ 26; 和0.3
摘要:
An IPTV reproducing apparatus and a method for reproducing data are disclosed. A method for reproducing data in an IPTV reproducing apparatus according to the present invention comprises reproducing data associated with a selected program while buffering the data being received through an IP network; and in case of the user's request for multiple speed playback, checking whether a requested multiple speed playback is possible based on a transfer speed of data,
摘要:
Provided is a storage device capable of increasing its life cycle and operating method thereof. The storage device includes a nonvolatile memory device that stores data and a controller that controls the nonvolatile memory device. The controller receive can modify a write time-out value of the nonvolatile memory device in accordance with predetermined conditions, such as request from a host or exceeding of a predefined life cycle.
摘要:
Zr—Ti—Ni(Cu)-based filler alloy composition having low melting point for brazing titanium and titanium alloys is expressed as: ZraTibNic (Formula 1) where a,b and c denote atomic % of Zr, Ti and Ni, respectively; 47≦a≦52; 24≦b≧30; 22≦c≦26; and 0.3
摘要:
Disclosed is Zr—Ti—Ni (Cu)-based filler alloy composition having low melting point for brazing titanium and titanium alloys. The Zr—Ti—Ni (Cu)-based alloy composition is expressed as: ZraTibNic (Formula 1) where a,b and c denote atomic % of Zr, Ti and Ni, respectively; 47
摘要:
A preview method is discussed. According to an embodiment, the preview method includes calculating preview reproduction periods for respective chapters that are selected for reproduction, based on a set preview period; and reproducing each chapter for the preview reproduction period calculated for the corresponding chapter.
摘要:
In a flat display panel, a surface of at least one of a sustain electrode and an address electrode may be formed to have a curved surface. The surface of the electrode may be formed as a continuous curved surface. The sustain electrode and the address electrode may be elongated in a lengthwise direction thereof. These lengthwise directions may be perpendicular to each other. The electrode may be formed by transferring an electrode material onto the substrate using an electrode frame defined with electrode forming grooves each having a same sectional shape as the electrode. Therefore, the surface of the electrode may be formed as the curved surface.
摘要:
Zr—Ti—Ni(Cu)-based filler alloy composition having low melting point for brazing titanium and titanium alloys is expressed as: ZraTibNic (Formula 1) where a, b and c denote atomic % of Zr, Ti and Ni, respectively; 47≦a≦52; 24≦b≦30; 22≦c≦26; and 0.3
摘要:
The present invention relates to a sputtering target of a multi-component single body, a preparation method thereof, and a method for fabricating a multi-component alloy-based nanostructured thin film using the same. The sputtering target according to the present invention comprises an amorphous or partially crystallized glass-forming alloy system composed of a nitride forming metal element, which is capable of reacting with nitrogen to form a nitride, and a non-nitride forming element which has no or low solid solubility in the nitride forming metal element and does not react with nitrogen or has low reactivity with nitrogen, wherein the nitrogen forming metal element comprises at least one element selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Y, Mo, W, Al, and Si, and the non-nitride forming element comprises at least one element selected from Mg, Ca, Sc, Ni, Cu, Ag, In, Sn, La, Au, and Pb.