摘要:
A skin cosmetic composition comprising: a hydrogel particle comprising a non-crosslinked hydrogel containing an oil component therein dispersed in an aqueous medium; a hydrogel particle comprising a non-crosslinked hydrogel containing an oil component therein; and a process for preparing a hydrogel particle comprising the steps of discharging an oil component-emulsified or dispersed solution prepared by dissolving a non-crosslinked hydrogel in an aqueous solution, with vibration from an orifice to form droplets; and cooling the droplets to solidify.
摘要:
A capacitive pressure sensor includes: a conductive silicon substrate having a diaphragm; an insulating substrate having a fixed electrode, the insulating substrate overlapping the conductive silicon substrate so as to be bonded thereto; and a sealed chamber formed between the diaphragm and the fixed electrode. A conductive silicon member is buried in a part of the insulating substrate, a portion of the conductive silicon member is exposed toward a surface of the insulating substrate facing the sealed chamber so as to form the fixed electrode, and another portion of the conductive silicon member is exposed toward the other surface of the insulating substrate not facing the sealed chamber so as to form a lead electrode of the fixed electrode.
摘要:
A pressure sensor includes a silicon-on-insulator (SOI) substrate, a glass substrate bonded to the SOI substrate by anode bonding, a silicon island formed on a part of a silicon layer of the SOI substrate and surrounded by a groove extending to an insulating layer of the SOI substrate, a through hole formed in the glass substrate, and an output electrode that is made of a conductive material, is disposed inside the through hole, and is electrically connected to an electrode formed on the glass substrate via the silicon island.
摘要:
Silicon oxide films which are good as gate insulation films are formed by subjecting a silicon oxide film which has been formed on an active layer comprising a silicon film by means of a PVD method or CVD method to a heat treatment at 300-700° C. in a dinitrogen monoxide atmosphere, or in an NH3 or N2H4 atmosphere, while irradiating with ultraviolet light, reducing the hydrogen and carbon contents in the silicon oxide film and introducing nitrogen into the boundary with the silicon film in particular. Furthermore, silicon oxide films which are good as gate insulating films have been formed by subjecting silicon oxide films which have been formed on an active layer comprising a silicon film by means of a PVD method or CVD method to a heat treatment at 300-700° C. in an N2O atmosphere (or hydrogen nitride atmosphere) while irradiating with ultraviolet light, and then carrying out a heat treatment at 300-700° C. in a hydrogen nitride atmosphere (N2O atmosphere), and reducing the amount of hydrogen and carbon in the silicon oxide film and introducing nitrogen into the boundary with the silicon film in particular.
摘要:
Silicon oxide films which are good as gate insulation films are formed by subjecting a silicon oxide film which has been formed on an active layer comprising a silicon film by means of a PVD method or CVD method to a heat treatment at 300-700.degree. C. in a dinitrogen monoxide atmosphere, or in an NH.sub.3 or N.sub.2 H.sub.4 atmosphere, while irradiating with ultraviolet light, reducing the hydrogen and carbon contents in the silicon oxide film and introducing nitrogen into the boundary with the silicon film in particular. Furthermore, silicon oxide films which are good as gate insulating films have been formed by subjecting silicon oxide films which have been formed on an active layer comprising a silicon film by means of a PVD method or CVD method to a heat treatment at 300-700.degree. C. in an N.sub.2 O atmosphere (or hydrogen nitride atmosphere) while irradiating with ultraviolet light, and then carrying out a heat treatment at 300-700.degree. C. in a hydrogen nitride atmosphere (N.sub.2 O atmosphere), and reducing the amount of hydrogen and carbon in the silicon oxide film and introducing nitrogen into the boundary with the silicon film in particular.
摘要翻译:作为栅极绝缘膜良好的氧化硅膜通过在300-700℃下通过PVD法或CVD法将形成在包含硅膜的有源层上的氧化硅膜进行热处理而形成。 在一氧化二氮气氛中,或在NH 3或N 2 H 4气氛中,同时用紫外线照射,降低氧化硅膜中的氢和碳含量,并将氮引入与硅膜的边界。 此外,作为栅极绝缘膜良好的氧化硅膜已经通过利用PVD法或CVD法在包含硅膜的有源层上形成的氧化硅膜在300-700℃下进行热处理而形成 在氮氧化物气氛(或氮气氛围)中,用紫外线照射,然后在氮气气氛(N2O氛围)中在300-700℃下进行热处理,并减少氢和碳的量 在氧化硅膜中,特别是将氮引入与硅膜的边界。
摘要:
A pressure sensor includes a silicon-on-insulator (SOI) substrate, a glass substrate bonded to the SOI substrate by anode bonding, a silicon island formed on a part of a silicon layer of the SOI substrate and surrounded by a groove extending to an insulating layer of the SOI substrate, a through hole formed in the glass substrate, and an output electrode that is made of a conductive material, is disposed inside the through hole, and is electrically connected to an electrode formed on the glass substrate via the silicon island.
摘要:
A skin cosmetic composition comprising: a hydrogel particle comprising a non-crosslinked hydrogel containing an oil component therein dispersed in an aqueous medium; a hydrogel particle comprising a non-crosslinked hydrogel containing an oil component therein; and a process for preparing a hydrogel particle comprising the steps of discharging an oil component-emulsified or dispersed solution prepared by dissolving a non-crosslinked hydrogel in an aqueous solution, with vibration from an orifice to form droplets; and cooling the droplets to solidify.
摘要:
A capacitive pressure sensor includes: a conductive silicon substrate having a diaphragm; an insulating substrate having a fixed electrode, the insulating substrate overlapping the conductive silicon substrate so as to be bonded thereto; and a sealed chamber formed between the diaphragm and the fixed electrode. A conductive silicon member is buried in a part of the insulating substrate, a portion of the conductive silicon member is exposed toward a surface of the insulating substrate facing the sealed chamber so as to form the fixed electrode, and another portion of the conductive silicon member is exposed toward the other surface of the insulating substrate not facing the sealed chamber so as to form a lead electrode of the fixed electrode.