摘要:
A planar light source, Fresnel lens sheet, and louver are disposed in the stated order in a light source apparatus. The Fresnel lens sheet deflects and focuses in one dimension light that has entered from the planar light source. The louver is disposed in the optical path of the light emitted from the Fresnel lens sheet, and the directivity of the light can be increased by restricting the traveling direction of the light to the focal direction of the Fresnel lens sheet. The light utilization ratio can thereby be increased, the directivity of planarly emitted light can be increased, and the brightness can be made uniform at the point of observation.
摘要:
A three-dimensional image display device is provided with a display panel. The display panel is provided with a plurality of pixels for the right eyes and pixels for the left eye, and light emitted from the pixels for the right eye is made incident to the right eye of a viewer and light emitted from the pixels for the left eye is made incident to the left eye. When the normal distance between the display panel and the viewer is set to a maximum observation distance, D (mm), then definition X (dpi) of at least one of a vertical direction and a horizontal direction on a display plane of the display panel is set as in the following expression. X ≥ 25.4 D × tan ( 1 ′ )
摘要:
In an image display device where a lenticular lens, a display panel, and a light source are provided in order from a viewer side, when cylindrical lenses of the lenticular lens are arrayed in a horizontal direction, in first-viewpoint pixels and second-viewpoint pixels of the display panel, openings whose sides which intersect with straight lines in the horizontal direction are not parallel to a vertical direction are formed. And, a shape of the openings of a pair of pixels mutually adjacent in the vertical direction is made line-symmetric with respect to edges of the pixels extending in the horizontal direction as an axis.
摘要:
In the liquid crystal display device of the present invention, a circular polarizer is provided to each of a pair of substrates that hold a liquid crystal layer, wherein the circular polarizer on the display surface side is composed of a polarizer, λ/2 plate in which Rth>0, and a λ/4 plate in which Rth 0. Rth is a retardation in the thickness direction of a λ/2 plate or a λ/4 plate. A reduction is achieved in the absolute value of the sum of the Rth between the λ/2 plate for which Rth>0 and the λ/2 plate for which Rth 0. A circular polarizer having excellent wavelength characteristics and excellent viewing angle characteristics when viewed at an angle is thereby obtained, and a liquid crystal display device and a terminal device that use the circular polarizer are obtained.
摘要:
A lenticular lens is provided in front of a liquid crystal panel composed of a plurality of pixels. In this case, the lenticular lens is arranged so that one cylindrical lens corresponds to two pixels adjacent to each other. Then, light rays outgoing from two pixels are refracted by this one cylindrical lens and intersect with each other at a point positioned on the surface of a tablet, and then reach the right eye and the left eye of a user, respectively.
摘要:
In a three-dimensional image display device for displaying color three-dimensional images, a fly eye lens, a display panel, and a light source are provided in this order from the observer side. A display panel has four pixels arrayed in a (2×2) matrix correlated with one lens element of the fly eye lens. In the event that j is a natural number, a pixel magnifying projection width e in a second direction is set in a range of the following expression according to mean interpupillary distance Y of the observers. e 3 ≠ Y 2 × j
摘要翻译:在用于显示彩色三维图像的三维图像显示装置中,从观察者侧依次提供飞眼用透镜,显示面板和光源。 显示面板具有以与飞眼透镜的一个透镜元件相关的(2×2)矩阵排列的四个像素。 在j是自然数的情况下,根据观察者的瞳孔间距离Y,在第二方向上的像素放大投影宽度e被设定在以下表达式的范围内。 e 3≠Y 2×j
摘要:
A three-dimensional image/two-dimensional image display device includes a plurality of display pixels, and a lenticular lens for three-dimensional display. Each display pixel is consisted of M×N number of sub-pixels to be viewed from N view points. A pitch a of sub-pixels arranged in the longitudinal direction of ridge projection of the lenticular lens and a pitch b of the sub-pixels arranged in a direction orthogonal to the longitudinal direction of the lenticular lens satisfy the following expression. The M×N number of sub-pixels included in each of said display pixels are formed within a square area. a:b=N:1
摘要:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
摘要:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
摘要:
In a display panel, a plurality of pixel sections are arranged in the form of a matrix. Each of the pixel sections includes a pixel for displaying an image for the left eye and a pixel for displaying an image for the right eye. Lenticular lens having repeated convex surfaces is disposed in front of the display panel to deflect the light emitted from each pixel in the horizontal direction from the pixel for displaying the image for the left eye to the pixel for displaying the image for the right eye in each pixel section. Reflection plate reflects the exterior light toward the display panel and has surface projections on the surface. In this case, the focal distance f of the lens is different from the distance H between the surface of the reflection plate and the apex of the lens.