Monodisperse nanoparticle containing thin films via self-assembly
    1.
    发明申请
    Monodisperse nanoparticle containing thin films via self-assembly 审中-公开
    通过自组装的含有薄膜的单分散纳米粒子

    公开(公告)号:US20050009079A1

    公开(公告)日:2005-01-13

    申请号:US10912266

    申请日:2004-08-05

    CPC classification number: B82Y30/00 G11B5/65 Y10T428/2982

    Abstract: A method and structure that forms a multilayer nanoparticle thin film assembly begins by functionalizing a substrate with functional molecules. Next, the invention replaces a stabilizer on a bottom surface of the first nanoparticles with the functional molecules via surface ligand exchange to make a first nanoparticle layer on the substrate. The invention then replaces the stabilizer on a top surface of the first nanoparticle layer with functional molecules via surface ligand exchange. The invention replaces the stabilizer on a bottom surface of the second nanoparticles with the functional molecules via surface ligand exchange to make a second nanoparticle layer on the first nanoparticle layer. Lastly, the invention repeats the previous steps and forms additional nanoparticle layers.

    Abstract translation: 形成多层纳米颗粒薄膜组件的方法和结构开始于用功能分子官能化底物。 接下来,本发明通过表面配体交换将第一纳米颗粒的底表面上的稳定剂与官能分子取代,以在衬底上形成第一纳米颗粒层。 然后,本发明通过表面配体交换用功能分子替代第一纳米颗粒层的顶表面上的稳定剂。 本发明通过表面配体交换将具有功能分子的第二纳米颗粒的底表面上的稳定剂替代为在第一纳米颗粒层上形成第二纳米颗粒层。 最后,本发明重复前述步骤并形成额外的纳米颗粒层。

    Constricted glow discharge plasma source
    3.
    发明授权
    Constricted glow discharge plasma source 失效
    约束辉光放电等离子体源

    公开(公告)号:US6137231A

    公开(公告)日:2000-10-24

    申请号:US711844

    申请日:1996-09-10

    CPC classification number: H01J37/32009 H05H1/24

    Abstract: A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

    Abstract translation: 公开了一种收缩辉光放电室和方法。 缩小的辉光放电等离子体源的极性和几何形状被设定为使从源极排出的离子的污染物和能量最小化。 可以并联并串联安装多个源,以在等离子体中提供持续的超低离子源,污染低于实际检测限。 该源适合于施加诸如氮化镓的氮化物和氧化钨等氧化物的膜,并且用于富集诸如氧和水蒸气的材料表面中的其它物质,这在任何已知的装置和方法中作为等离子体是困难的过程。 该源还可用于通过提供诸如氩离子的低能离子来辅助诸如金属膜的膜的沉积。

    Process of forming a multilayer nanoparticle-containing thin film self-assembly
    6.
    发明授权
    Process of forming a multilayer nanoparticle-containing thin film self-assembly 有权
    形成含多层纳米颗粒的薄膜自组装工艺

    公开(公告)号:US06805904B2

    公开(公告)日:2004-10-19

    申请号:US10080195

    申请日:2002-02-20

    CPC classification number: B82Y30/00 G11B5/65 Y10T428/2982

    Abstract: A method and structure that forms a multilayer nanoparticle thin film assembly begins by functionalizing a substrate with functional molecules. Next, the invention replaces a stabilizer on a bottom surface of the first nanoparticles with the functional molecules via surface ligand exchange to make a first nanoparticle layer on the substrate. The invention then replaces the stabilizer on a top surface of the first nanoparticle layer with functional molecules via surface ligand exchange. The invention replaces the stabilizer on a bottom surface of the second nanoparticles with the functional molecules via surface ligand exchange to make a second nanoparticle layer on the first nanoparticle layer. Lastly, the invention repeats the previous steps and forms additional nanoparticle layers.

    Abstract translation: 形成多层纳米颗粒薄膜组件的方法和结构开始于用功能分子官能化底物。 接下来,本发明通过表面配体交换将第一纳米颗粒的底表面上的稳定剂与官能分子取代,以在衬底上形成第一纳米颗粒层。 然后,本发明通过表面配体交换用功能分子替代第一纳米颗粒层的顶表面上的稳定剂。 本发明通过表面配体交换将具有功能分子的第二纳米颗粒的底表面上的稳定剂替代为在第一纳米颗粒层上形成第二纳米颗粒层。 最后,本发明重复前述步骤并形成额外的纳米颗粒层。

    Low temperature formation of electrode having electrically conductive
metal oxide surface
    7.
    发明授权
    Low temperature formation of electrode having electrically conductive metal oxide surface 失效
    具有导电金属氧化物表面的电极的低温形成

    公开(公告)号:US5827580A

    公开(公告)日:1998-10-27

    申请号:US625270

    申请日:1996-03-27

    CPC classification number: H01M4/32 C23C14/0042 C23C14/083 H01M4/26

    Abstract: A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

    Abstract translation: 公开了一种低温工艺,用于通过阴极电弧沉积在基板上形成金属低氧化物,方法是控制存在于沉积室中的氧气的压力,或通过控制金属熔剂的密度,或通过这些调节的组合,从而 控制沉积的金属低氧化物涂层中氧化物与金属的比例。 通过调整电弧的脉冲长度(周期的持续时间),并通过调整电弧的频率,或通过调整电弧的频率,可以通过控制电弧的放电电流来调整金属焊剂的密度 这些参数。 在优选实施例中,公开了一种低温工艺,用于在电极表面(例如氧化镍电极的表面)上形成导电金属低氧化物,例如钛的导电低氧化物,通过这种阴极 电弧沉积和沉积参数的控制。 在优选的实施方案中,该方法产生了一种低氧化钛涂层的氧化镍电极,其在使用如正极这样的电极制成的电池充电期间表现出减少的氧的寄生放电,并且表现出高的氧超电势,导致抑制 在电池完全充电时电极的氧气释放。

Patent Agency Ranking