Abstract:
Disclosed herein are a spalling-preventing composite material composed of fiber and powder, which have different diameters and melting points so as to be capable of realizing the effect of preventing spalling of high-strength concrete and the effect of improving the fluidity of concrete, and a high-strength refractory concrete comprising the spalling-preventing material. The composite material for preventing spalling of high-strength concrete is composed of powder and fiber at 1:1-3, wherein the powder is a polymer powder having a diameter of 0.10-0.5 mm and a melting point of 110-150° C., and the fiber is a conjugate fiber including a first fiber having a diameter of 0.05-0.10 mm, a length of 5-25 mm and a melting point of 150-190° C., and a second fiber having a diameter of 0.01-0.05 mm, a length of 5-25 mm and a melting point of 190-250° C., the first fiber being a polypropylene fiber, and the second fiber being a nylon fiber or a polyvinyl alcohol fiber.
Abstract:
The present invention relates to a signal combining apparatus of the active phase array antenna. The signal combining apparatus includes a plurality of signal distributors for receiving a signal from an antenna array element located at boundary between sub antenna arrays and distributing the signal to the sub antenna arrays, which include the antenna array element; and a plurality of signal combiners for combining the signal from a plurality of antenna elements and the signal distributors in corresponding sub antenna array. The present invention can prevent degrade a performance caused by sudden phase difference and can effectively receive tracing signal by passing a signal of antenna element located at boundary between sub arrays antenna to both signal combiners corresponding to both of sub antenna arrays.
Abstract:
A hybrid fuel cell vehicle with a multi-power source and a multi-drive system includes: a plurality of primary power sources sharing a single main bus terminal and connected in parallel to each other; a plurality of drive systems receiving power from the main bus terminal to generate output torque so as to drive vehicle wheels and connected in parallel to each other; and an auxiliary power source sharing the main bus terminal and disposed between the primary power sources and the drive systems to supplement power shortage of the primary power sources.
Abstract:
Disclosed is a suckling system wherein suckling of calves can be automatically performed and weaning stress of newborn calves can be minimized. The suckling system for calves with minimal weaning stress, includes a suckling unit and a milk feed unit to feed milk to calves, and a control module to control the units, wherein the suckling unit comprises a weight scale, and the control module measures the weight of calves and controls a feed amount of the milk feed unit, based on the weight. The milk feed unit uniformly supplies milk set to the temperature of the mother's milk to calves, the height of the teat member is controllable to a level suitable for calves, and after feeding, the teat member and the milk feed unit are automatically cleaned.