Abstract:
Disclosed is a dummy touch screen system. The dummy touch screen system includes a host mobile terminal and a dummy touch screen. Here, the host mobile terminal includes a first touch screen unit having a first touch panel and a first display, a first application module driven by receiving a first touch signal generated by a touch of the first touch panel, a first display module receiving a first image signal output by a drive of the first application module, a first image communication module receiving a second image signal output by the drive of the first application module, and a first human interface device (HID) module transmitting a touch signal transmitted from the outside to the first application module. The dummy touch screen includes a second image communication module receiving the second image signal, a second display module receiving the second image signal from the second image communication module, a second touch screen unit having a second display displaying a second image display signal output by a drive of the second display module, and a second HID module receiving a second touch signal generated by a touch of the second touch panel.
Abstract:
Disclosed is a method of preparing high crystalline nanoporous titanium dioxide, in which the high crystalline nanoporous titanium dioxide, which is harmless to the human body and self-purified through the decomposition of organic matters, is prepared in mass production at the room temperature through a simply synthesis method. The method includes the steps of (a) mixing a titanium precursor and a surfactant in a solvent and performing a sol-gel reaction at a room temperature; (b) maturing a reactant obtained through the sol-gel reaction at the room temperature; (c) filtering the matured reactant and washing the matured reactant; and (d) drying the washed reactant to obtain titanium dioxide having nanopores.
Abstract:
Disclosed is a method of preparing high crystalline nanoporous titanium dioxide, in which the high crystalline nanoporous titanium dioxide, which is harmless to the human body and self-purified through the decomposition of organic matters, is prepared in mass production at the room temperature through a simply synthesis method. The method includes the steps of (a) mixing a titanium precursor and a surfactant in a solvent and performing a sol-gel reaction at a room temperature; (b) maturing a reactant obtained through the sol-gel reaction at the room temperature; (c) filtering the matured reactant and washing the matured reactant; and (d) drying the washed reactant to obtain titanium dioxide having nanopores.
Abstract:
Provided are an electronic control mixing valve and a semiconductor manufacturing apparatus using the same that are capable of controlling a temperature of a chuck base by supplying recirculation oils using a slidable mixing valve or a rotatable mixing valve, which is electrically controlled.Accordingly, the electronic control mixing valve includes a lower region having a plurality of through-holes and introduction ports formed at lower ends of the plurality of through-holes, respectively, an upper region having the same number of openings as the plurality of through-holes and formed at a region of a lower surface facing the plurality of through-holes, and one discharge port formed at an upper surface, and a central region having one through-hole configured to bring the upper region in communication with the lower region, and slidable with respect to the plurality of through-holes such that the one through-hole brings any one of the plurality of through-holes in communication with the opening corresponding to the one of the plurality of through-holes and blocks the opening that does not correspond to the one of the plurality of through-holes, wherein the one through-hole of the central region is slidably driven by a stepping motor.
Abstract:
A method for preparing impurity-doped titanium dioxide photocatalysts having superior photo activity at a visible light region and an ultraviolet light region in mass production. The titanium dioxide photocatalysts are prepared in mass production using low-price reusable materials at a room temperature when titanium dioxide is doped with carbon, sulfur, nitrogen, fluorine, and phosphorous. The method for preparing impurity-doped titanium dioxide representing superior photo activity in both of the ultraviolet light region and the visible light region in mass production includes: stirring titanium dioxide powder while mixing the titanium dioxide powder with a doping agent; performing ultrasonification with respect to a mixed solution; washing a reactant obtained through the ultrasonification by using a washing solution while performing pressure-reduction filtering with respect to the reactant; obtaining doped titanium dioxide particles by drying the reactant; and performing heat treatment with respect to the doped titanium dioxide particles at a nitrogen atmosphere.
Abstract:
The present invention relates to a method for preparing anatase-type titanium dioxide (TiO2) nanoparticles, the method comprising the steps of: uniformly mixing titanium n-butoxide and cetyltrimethyl ammonium salt (CTAS) in water; subjecting the mixture to hydrothermal treatment at a temperature of 60˜120° C.; and collecting anatase-type titanium dioxide nanoparticles produced by the hydrothermal treatment and drying the collected nanoparticles. According to the present invention, anatase-type titanium dioxide nanoparticles having excellent crystallinity can be easily prepared in large amounts by a simple process without needing heat treatment.
Abstract:
The present invention relates to a method for preparing anatase-type titanium dioxide (TiO2) nanoparticles, the method comprising the steps of: uniformly mixing titanium n-butoxide and cetyltrimethyl ammonium salt (CTAS) in water; subjecting the mixture to hydrothermal treatment at a temperature of 60˜120° C.; and collecting anatase-type titanium dioxide nanoparticles produced by the hydrothermal treatment and drying the collected nanoparticles. According to the present invention, anatase-type titanium dioxide nanoparticles having excellent crystallinity can be easily prepared in large amounts by a simple process without needing heat treatment.
Abstract:
Disclosed is a dummy touch screen system. The dummy touch screen system includes a host mobile terminal and a dummy touch screen. Here, the host mobile terminal includes a first touch screen unit having a first touch panel and a first display, a first application module driven by receiving a first touch signal generated by a touch of the first touch panel, a first display module receiving a first image signal output by a drive of the first application module, a first image communication module receiving a second image signal output by the drive of the first application module, and a first human interface device (HID) module transmitting a touch signal transmitted from the outside to the first application module. The dummy touch screen includes a second image communication module receiving the second image signal, a second display module receiving the second image signal from the second image communication module, a second touch screen unit having a second display displaying a second image display signal output by a drive of the second display module, and a second HID module receiving a second touch signal generated by a touch of the second touch panel.
Abstract:
Disclosed is a nanoporous photocatalyst having a high specific surface area and high crystallinity and a method for preparing the same, capable of preparing nanoporous photocatalysts, which satisfy both of the high specific surface area of 350 m2/g to 650 m2/g and high crystallinity through a simple synthetic scheme, in mass production at a low price. The nanoporous catalyst having a high specific area and high crystallinity includes a plurality of nanopores having an average diameter of about 1 nm to about 3 nm. A micro-framework of the nanoporous photocatalyst has a single crystalline phase of anatase or a bicrystalline phase of anatase and brookite, and a specific surface area of the nanoporous photocatalyst is in a range of about 350 m2/g to 650 m2/g.
Abstract:
Disclosed is a method of preparing high crystalline nanoporous titanium dioxide photocatalyst, capable of preparing the high crystalline nanoporous titanium dioxide photocatalyst in mass production through a simply synthesis method using an ultrasonification. The method includes the steps of (a) mixing a titanium precursor and a surfactant in a first solvent and performing a sol-gel reaction; (b) maturing a reactant obtained through the sol-gel reaction for 15 hours to 25 hours; (c) filtering the matured reactant and washing the matured reactant; (d) primarily drying the washed reactant at a temperature of 20° C. to 50° C. to obtain titanium sediments; (e) mixing the titanium sediments in a second solvent and performing an ultrasonification with respect to the mixed solution for 10 minutes to 120 minutes; and (f) secondarily drying the mixed solution, which has been subject to the ultrasonification, at a temperature of 15° C. to 45° C. to obtain titanium dioxide photocatalytic particles.