Abstract:
Heat exchangers and related methods, e.g., methods of reducing heat from a load, are disclosed. In some embodiments, a device includes a stationary element defining a cavity, a movable element, and a first heat pipe in fluid communication with the cavity defined by the stationary element.
Abstract:
The present invention provides photobioreactors, solar energy gathering systems, and methods for thermal control of a culture medium containing a prototrophic organism in a photobioreactor, that allow temperature control in a cost effective manner, reducing the energy required for temperature control of a culture medium containing phototrophic microorganisms in a photobioreactor.
Abstract:
The invention overcomes limitations of conventional power and thermodynamic sources by with micromachinery components that enable production of significant power and efficient operation of thermodynamic systems in the millimeter and micron regime to meet the efficiency, mobility, modularity, weight, and cost requirements of many modern applications. A micromachine of the invention has a rotor disk journalled for rotation in a stationary structure by a journal bearing. A plurality of radial flow rotor blades, substantially untapered in height, are disposed on a first rotor disk face, and an electrically conducting region is disposed on a rotor disk face. A plurality of stator electrodes that are electrically interconnected to define multiple electrical stator phases are disposed on a wall of the stationary structure located opposite the electrically conducting region of the rotor disk. A first orifice in the stationary structure provides fluidic communication with the first rotor disk face at a location radially central of the rotor blades, and a second orifice in the stationary structure provides fluidic communication with the first rotor disk face at a location radially peripheral of the rotor blades. An electrical connection to the stator electrode configuration is provided for stator electrode excitation and for power transfer with the stator electrode configuration as the rotor disk rotates.
Abstract:
Heat exchanger. The heat exchanger includes a thermal contact plate defining a cavity in fluid communication with a first pipe and a plurality of stationary elements substantially perpendicular to the first pipe each defining a cavity wherein each cavity is in fluid communication with the first pipe and at least one cavity includes a wick. A plurality of movable elements are provided wherein the movable elements and the stationary elements are substantially parallel, alternatingly arranged and a portion of the movable elements overlaps a portion of the stationary elements. A working fluid is provided in the first pipe and cavities or stationary elements and thermal contact plate.
Abstract:
The present invention provides photobioreactors, solar energy gathering systems, and methods for thermal control of a culture medium containing a prototrophic organism in a photobioreactor, that allow temperature control in a cost effective manner, reducing the energy required for temperature control of a culture medium containing phototrophic microorganisms in a photobioreactor.
Abstract:
The invention described herein relates to photobioreactors, methods, assembly and use of such apparatus for culturing light-capturing organisms in a cost-effective manner. Various embodiments provide for a passive thermal regulation system employing selected microorganisms in a photobioreactor apparatus and methods for biological production of various fuel and chemical products from these organisms. Additional embodiments provide a solar biofactory system capable of culturing light capturing organisms to an areal productivity of 3.3 g/m2/hr. Further embodiments are directed to a photobioreactor capable of culturing light capturing organisms to an OD730 of about 14 g/L DCW. Such embodiments incorporate passive thermal regulation and systems.
Abstract translation:本文描述的本发明涉及用于以成本有效的方式培养光捕获生物体的这种装置的光生物反应器,方法,组装和使用。 各种实施例提供了在光生物反应器装置中使用选定的微生物的被动热调节系统以及用于从这些生物体生物制备各种燃料和化学产品的方法。 另外的实施方案提供能够培养光捕获生物体至3.3g / m 2 / hr的面积生产率的太阳能生物质感系统。 其它实施方案涉及能够将光捕获生物培养至约14g / L DCW的OD730的光生物反应器。 这样的实施例包括无源热调节和系统。
Abstract:
The invention provides a micro-gas turbine engine and associated microcomponentry. The engine components, including, e.g., a compressor, a diffuser having diffuser vanes, a combustion chamber, turbine guide vanes, and a turbine are each manufactured by, e.g., microfabrication techniques, of a structural material common to all of the elements, e.g., a microelectronic material such as silicon or silicon carbide. Vapor deposition techniques, as well as bulk wafer etching techniques, can be employed to produce the engine. The engine includes a rotor having a shaft with a substantially untapered compressor disk on a first end, defining a centrifugal compressor, and a substantially untapered turbine disk on the opposite end, defining a radial inflow turbine. The rotor is preferably formed of a material characterized by a strength-to-density ratio that enables a rotor speed of at least about 500,000 rotations per minute. An annular, axial-flow combustion chamber is provided that is located axially between the compressor and turbine disks and that has a ratio of annular height to axial length of at least about 0.5. The micro-gas turbine engine can be configured with an integral microgenerator as a source of electrical power, and can be employed for a wide range of power, propulsion, and thermodynamic cycle applications.
Abstract:
The invention described herein relates to photobioreactors, methods, assembly and use of such apparatus for culturing light-capturing organisms in a cost-effective manner. Various embodiments provide for a passive thermal regulation system employing selected microorganisms in a photobioreactor apparatus and methods for biological production of various fuel and chemical products from these organisms. Additional embodiments provide a solar biofactory system capable of culturing light capturing organisms to an areal productivity of 3.3 g/m2/hr. Further embodiments are directed to a photobioreactor capable of culturing light capturing organisms to an OD730 of about 14 g/L DCW. Such embodiments incorporate passive thermal regulation and systems.
Abstract translation:本文描述的本发明涉及用于以成本有效的方式培养光捕获生物体的这种装置的光生物反应器,方法,组装和使用。 各种实施例提供了在光生物反应器装置中使用选定的微生物的被动热调节系统以及用于从这些生物体生物制备各种燃料和化学产品的方法。 另外的实施方案提供能够培养光捕获生物体至3.3g / m 2 / hr的面积生产率的太阳能生物质感系统。 其它实施方案涉及能够将光捕获生物培养至约14g / L DCW的OD730的光生物反应器。 这样的实施例包括无源热调节和系统。