Abstract:
A method for charging electric vehicles includes receiving information regarding an electric vehicle. At least a portion of the information is received through a vehicle interface configured to place a battery of the electric vehicle into electrical communication with a fuel cell system. A charge is delivered from the fuel cell system to the battery of the electric vehicle through the vehicle interface without use of a direct current to alternating current (DC/AC) converter. The charge is delivered based at least in part on the information.
Abstract:
A method of providing electrical power using a split bus configuration includes receiving a first direct current at a positive bus of a split bus, where the first direct current originates from a first fuel cell segment. A second direct current is received at a negative bus of the split bus, where the second direct current originates from a second fuel cell segment. A third direct current is also received at the split bus such that a combined direct current is formed including the first direct current, the second direct current, and the third direct current. The third direct current originates from an alternative direct current (DC) source. The combined direct current is provided to an inverter such that an alternating current is generated for a load.
Abstract:
A system and method for affecting computing resources. The method includes sensing variables associated with spatially dispersed computing resources and providing sensed data in response thereto. Subsequently the spatially dispersed computing resources are selectively automatically affected based on sensed variables associated with the computing resources. In a specific embodiment, the method further includes determining if the sensed data meet a predetermined criterion or criteria and providing one or more control signals in response thereto. The specific method further includes moving virtual machines associated with computing resources that meet the predetermined criterion or criteria to computing resources that do not meet the predetermined criterion or criteria. The sensed data may include temperature, and the predetermined criteria or criterion may include a predetermined threshold beyond which temperature data is considered to meet the predetermined criterion. In an illustrative embodiment, the method further includes selectively activating one or more devices, such as cooling systems, that are adapted to alter sensed variables to cause the sensed data to no longer meet the predetermined criterion or criteria.
Abstract:
A method for charging electric vehicles includes receiving information regarding an electric vehicle. At least a portion of the information is received through a vehicle interface configured to place a battery of the electric vehicle into electrical communication with a fuel cell system. A charge is delivered from the fuel cell system to the battery of the electric vehicle through the vehicle interface without use of a direct current to alternating current (DC/AC) converter. The charge is delivered based at least in part on the information.
Abstract:
A method of providing electrical power using a split bus configuration includes receiving a first direct current at a positive bus of a split bus, where the first direct current originates from a first fuel cell segment. A second direct current is received at a negative bus of the split bus, where the second direct current originates from a second fuel cell segment. A third direct current is also received at the split bus such that a combined direct current is formed including the first direct current, the second direct current, and the third direct current. The third direct current originates from an alternative direct current (DC) source. The combined direct current is provided to an inverter such that an alternating current is generated for a load.
Abstract:
A method of providing electrical power using a split bus configuration includes receiving a first direct current at a positive bus of a split bus, where the first direct current originates from a first fuel cell segment. A second direct current is received at a negative bus of the split bus, where the second direct current originates from a second fuel cell segment. A third direct current is also received at the split bus such that a combined direct current is formed including the first direct current, the second direct current, and the third direct current. The third direct current originates from an alternative direct current (DC) source. The combined direct current is provided to an inverter such that an alternating current is generated for a load.
Abstract:
A method of providing electrical power using a split bus configuration includes receiving a first direct current at a positive bus of a split bus, where the first direct current originates from a first fuel cell segment. A second direct current is received at a negative bus of the split bus, where the second direct current originates from a second fuel cell segment. A third direct current is also received at the split bus such that a combined direct current is formed including the first direct current, the second direct current, and the third direct current. The third direct current originates from an alternative direct current (DC) source. The combined direct current is provided to an inverter such that an alternating current is generated for a load.