摘要:
The present invention provides a bullet collecting box which is installed with a plurality of rubber plates in the bullet collecting box having a rectangular parallelepiped shape and filled with rubber powder filling materials having a particle size of 0.1 to 3 mm therein, thereby collecting the bullets fired in the indoor shooting range without damage, and a bullet collecting system which can be used by installing the bullet collecting box in the indoor shooting range. Also, the present invention provides a bullet collecting system for preventing occurrence of lead fume in the indoor shooting range, in which the beaten zone of the indoor shooting range is newly improved from an existing system of using an iron plate to a system of using powder filling materials, thereby preventing the leakage of lead fume, and contributing to an early normalization of the shooting range and a creative national defense.
摘要:
A battery pack including a secondary battery and a frame for mounting the secondary battery therein. A mounting ledge protrudes from one portion of the frame and a guide member protrudes from another portion of the frame. A circuit section is installed at a portion of the frame and inserted between the mounting ledge and the guide member so as to be connected to the secondary battery. A fixing part is provided in the frame and the circuit section in order to fix the circuit section to the frame.
摘要:
A pack case for a secondary battery. The pack case includes a frame member having a rectangular shape and a mounting ledge at an inner wall thereof. The pack case includes a dummy block mounted within the frame on one side of the mounting ledge. The pack case allows a single secondary battery to be mounted in a pack case adaptable for two secondary batteries.
摘要:
A method for production of mono-dispersed and crystalline titanium dioxide ultra fine powders comprises preparing an aqueous titanyl chloride solution, diluting the aqueous titanyl chloride solution to a concentration of between about 0.2 to 1.2 mole and heating the diluted aqueous titanyl chloride solution and maintaining the solution in a temperature range of between 15 to 155.degree. C. to precipitate titanium dioxide. The aqueous titanyl chloride solution is prepared by adding ice pieces of distilled water or icing distilled water to undiluted titanium tetrachloride.
摘要:
Disclosed are a thin film transistor having high reliability and providing a simplified fabricating process, and a method of fabricating the thin film transistor. In the method, a dielectric substrate is prepared, a semiconductor layer is formed on the dielectric substrate, a gate dielectric film is formed on the semiconductor layer, a first gate electrode is formed on the gate dielectric film, a second gate electrode contacting a side wall of the first gate electrode is formed, and impurities are implanted into the semiconductor layer using the first gate electrode as a mask.
摘要:
The present invention provides a method of manufacturing Ni-doped TiO2 nanotube-shaped powder and a method of manufacturing a sheet film to be inserted into a high-pressure hydrogen tank for a fuel cell vehicle by mixing the Ni-doped TiO2 nanotube-shaped powder with a binder and compressing the mixture. The method of manufacturing Ni-doped TiO2 nanotube-shaped powder includes: forming Ni-doped TiO2 nanotube-shaped powder using Ni-doped TiO2 powder as a starting material; and drying the Ni-doped TiO2 nanotube-shaped powder in the temperature range of 60 to 200° C. for 2 to 24 hours.
摘要:
The present invention provides a method of manufacturing Ni-doped TiO2 nanotube-shaped powder and a method of manufacturing a sheet film to be inserted into a high-pressure hydrogen tank for a fuel cell vehicle by mixing the Ni-doped TiO2 nanotube-shaped powder with a binder and compressing the mixture. The method of manufacturing Ni-doped TiO2 nanotube-shaped powder includes: forming Ni-doped TiO2 nanotube-shaped powder using Ni-doped TiO2 powder as a starting material; and drying the Ni-doped TiO2 nanotube-shaped powder in the temperature range of 60 to 200° C. for 2 to 24 hours.
摘要:
The present invention relates to titanium dioxide powder with a large specific surface area, a method for preparing thereof, and a use of the titanium dioxide as a photocatalyst, and more particularly, discloses a method for the preparation of titanium dioxide powder comprised of the steps of adding ice pieces or icy distilled water to pure titanium tetrachloride (TiCl4) to give an aqueous titanylchloride solution of 1.5 M or higher; diluting the aqueous titanylchloride with distilled water; obtaining precipitates from the diluted aqueous titanylchloride solution by standing for 2-20 hours at 15-70° C.; and filtering, washing and drying the above precipitates to give downy hair-shaped TiO2 powder with a specific surface area of 130-200 m2/g. The titanium dioxide powder of the present invention shows high photocatalytic activity, so that it can be used to decompose environmental organic pollutants by taking advantage of an advanced oxidation process (AOP) in which pollution-free energy, such as solar energy is utilized as a driving force. The method allows the formation of a crystalline phase of titanium dioxide at room temperature without a high temperature and high pressure process and enjoys an economical advantage of being low in production cost.
摘要:
The present invention is directed to an advanced zirconium alloy having superior corrosion resistance and high strength suitable for fuel rod cladding, spacer grids and other structural components in a reactor core of nuclear power plants.
摘要:
Provided are a thin film transistor and a method of manufacturing the same. The thin film transistor includes: a lower structure; a semiconductor layer formed on the lower structure and including a plurality of doping regions; a first insulating layer and a second insulating layer formed on the semiconductor layer and separated from each other; a third insulating layer formed on the first insulating layer and the second insulating layer; and a gate electrode layer formed between regions of the third insulating layer respectively corresponding to the first insulating layer and the second insulating layer.